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Light bullets in nonlinear waveguide arrays under the influence of dispersion and the Raman effect
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We study the formation and the dynamics of spatially broad light bullets generated in silica waveguide arrays.
We show that these bullets are metastable even in the presence of high-order dispersion, coupling dispersion,
and the Raman effect and can be approximated by the hyperbolic secant function with a high degree of accuracy.
We also investigate the formation of narrow light bullets which are spatially localized in only a few adjacent
waveguides and short in time. We reveal that the latter are extremely robust even in the presence of the Raman
effect.
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I. INTRODUCTION

Waveguide arrays (WAs) present a unique discrete periodic
photonic system to investigate many interesting fundamen-
tal phenomena such as discrete diffraction [1,2], discrete
solitons [1,3–6], high-power propagation [7], and photonic
Bloch oscillations [1,8–11]. In applications, two-dimensional
networks of nonlinear waveguides with discrete solitons may
be useful for designing signal-processing circuits [12]. Binary
WAs have also been intensively used to mimic relativistic
phenomena typical of quantum field theory, such as Zitter-
bewegung [13], the Klein paradox [14], fermion pair produc-
tion [15], and the Dirac equation in the linear regime [16].
Quite recently, the optical analog of relativistic Dirac solitons
with exact analytical solutions in binary WAs was found
in [17] and numerically proved to be very robust [18], which
could potentially pave the way for using binary WAs as a
classical simulator of quantum nonlinear effects arising from
the Dirac equation, something that is thought to be impos-
sible to achieve in conventional (i.e., linear) quantum field
theory.

In a recent study [19] the diffractive resonant radiation
(DRR)—an analog of the well-known dispersive resonant
radiation in the temporal case for optical fibers [20,21]—was
found when a spatial soliton in the continuous-wave (cw)
regime was launched into WAs. It turns out that the DRR
is a universal effect which can occur in WAs not only in
the cw regime but also in the spatiotemporal case where a
long pulse is used [22]. The wave-number supercontinuum
generation and the compensation of the soliton self-wave-
number shift by the emitted DRR have also been revealed [22].
The supercontinuum generation in both frequency and wave-
number domains in WAs was numerically shown in [23].

Light bullets (LBs) refer to spatiotemporal solitary waves
which can propagate without distortion in multidimensional
space and time under the combined effect of diffraction,
anomalous dispersion, and nonlinearity [24,25]. They have
been a subject of extensive investigation in both conserva-
tive [5,26–35] and dissipative systems [36–38]. Dynamic light
bullets have also been shown to exist in normal dispersion
and when plasma generation is taken into account [39]. In
continuous conservative media possessing Kerr nonlinearity
only, LBs are not stable and a collapse takes place [5,24].

However, it has been shown that the discreteness introduced
by WAs can stop the collapse [26], and thus nonlinear WAs can
be a unique platform to meaningfully investigate LBs [26–34].
It is well known that in the case of one time and one space
variables (often referred to as the 1+1 case) the soliton solution
of the nonlinear Schrödinger equation with Kerr nonlinearity
can be analytically found, but in the 1 + N case—with N > 1
representing the number of space variables—one often needs
to use numerical tools to calculate the profiles of localized
structures in both continuous and discrete systems [5]. In
WAs much attention has been focused on LBs with narrow
states where almost all energy is localized in only a few
waveguides [26–31,33,34]. In WAs of circular symmetry
(where arrays are arranged in a circle) a detailed classification
of different stationary solutions with less than six waveguides
was presented in [30]. In linearly coupled WAs (where arrays
are arranged in a line) LBs with an extremely narrow state
where almost all energy is localized in only one waveguide
were numerically found and investigated in [26–28]. Profiles of
broad LBs where the light energy is localized in more than ten
waveguides of linearly coupled arrays were numerically found
in [29] by solving a nonlinear eigenvalue problem. However,
so far in theoretical works on LBs with Kerr nonlinearity
other important effects for pulses such as the stimulated
Raman scattering, wavelength dependence of the coupling
coefficient between adjacent waveguides (further referred to
as the coupling dispersion), and high-order dispersion (HOD)
have not been considered. It is obvious that all these effects
will somehow influence the LB formation and its dynamics.
For instance, it is well known that the coupling dispersion
is large because it arises from the evanescent field overlap
between adjacent waveguides. This in turn makes the discrete
diffraction, i.e., beam spreading, wavelength dependent. This
was demonstrated dramatically when a continuum generated
via a microstructure fiber was injected into a single waveguide
and the spectrum of the colors in the light beam was spatially
dispersed at the output of the WA made of LiNbO3 crystal with
defocusing nonlinearity [40] (see also [23]).

In this paper we first present the generalized coupled-mode
equations (GCMEs) governing the spatiotemporal effects
in linearly coupled WAs made of silica, which take into
account the coupling dispersion, the Raman effect, and HOD.
We then investigate the generation of broad LBs and their
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FIG. 1. (Color online) (a) Coupling coefficient κ as a function
of the wavelength. Inset in (a): Zoomed version of (a) in the region
of shorter wavelengths. (b) The solid (blue) curve represents the
dispersion parameter D of each individual waveguide as a function
of the wavelength, whereas the dotted (red) vertical line indicates
the position of the cutoff wavelength at 1.3308 μm. Inset in (b):
Zoomed version of (b) in the region around the cutoff wavelength.
The parameters of the WA are given in the text.

dynamics during propagation. We demonstrate that these LBs
are metastable and can propagate without change for hundreds
of dispersion lengths even in the presence of the coupling
dispersion, the Raman effect, and HOD. We show that the
profiles of these broad LBs can be approximated with a high
degree of accuracy by the hyperbolic secant function. We also
study the formation and dynamics of narrow LBs and show
that they are extremely robust even under strong disturbances
of input conditions and the Raman effect.

II. GENERALIZED COUPLED-MODE EQUATIONS

Our starting point is the generalized coupled-mode equa-
tions of WAs consisting of identical waveguides made of silica
in the time domain (see [23] for more details):

i∂zAn + D(i∂T )An + κ(i∂T )[An+1 + An−1] + γ

(
1+ i

ω0
∂T

)

×An(z,T )
∫ ∞

−∞
R(t ′)|An(z,T − t ′)|2dt ′ = 0, (1)

where An is the electric-field envelope in the nth waveguide,
z is the longitudinal coordinate, T = t − z/vg is the delay in
the comoving frame, vg is the group velocity at the carrier
frequency ω0, t is the time variable, the linear dispersion
operator is given by D(i∂T ) ≡ s|β2|

2 ∂2
T + ∑

m�3
βm

m! [i∂T ]m with
s = +1 (s = −1) for the anomalous (normal) group velocity
dispersion (GVD) regime, and βm is the mth-order GVD
coefficient. Note that the group velocity vg = 1/β1. Similarly,
the operator for the coupling coefficient κ is given by
κ(i∂T ) ≡ ∑

m�0
κm

m! [i∂T ]m and κm is the mth-order derivative
of κ(ω) at the carrier frequency ω0. Note that in previous
works dealing with LBs in WAs the coupling dispersion has
often been ignored, and thus the coupling coefficient κ has
often been treated as constant, but in this specific work we
would like to relax this approximation, since as shown in
Fig. 1(a) the coupling coefficient strongly depends on the
frequency, so this approximation is not very appropriate. Here
we assume that WAs consist of identical waveguides with the
nonlinear parameter of each waveguide being γ . The nonlinear
response function R(t) = (1 − fR)δ(t) + fRhR(t), where the
first term represents the instantaneous electronic contribution

with δ(t) being the Dirac delta function, hR(t) is the Raman
response function of the core, and fR represents its fractional
contribution. For silica, fR � 0.18 and the Raman effect is
included through a simple model in which hR(t) has the form

hR(t) = τ 2
1 +τ 2

2

τ1τ
2
2

exp(−t/τ2)sin(t/τ1)	(t), where τ1 = 12.2 fs,
τ2 = 32 fs [41], and 	(t) is the Heaviside step function
that ensures causality. The self-steepening effect is included
through the derivative ∂T in the nonlinear terms. Now we
introduce dimensionless variables ξ = z/LD , τ = T/T0, and
an = An/

√
P0, where the dispersion length LD = T 2

0 /|β2| and
T0 is related to the full width at half maximum (FWHM)
pulse duration in the case of a sech-shaped pulse as follows:
TFWHM � 1.763T0 [41]. The power scale is P0 = 1/(γLD).
With these new variables, Eq. (1) is equivalent to the following
dimensionless GCMEs:

i∂ξ an + D(i∂τ )an + LDκ(i∂τ )[an+1 + an−1]

+
(

1 + i

ω0T0
∂τ

)
an

∫ ∞

−∞
r(τ ′)|an(ξ,τ − τ ′)|2dτ ′ = 0, (2)

where the dispersion operator now assumes the form D(i∂τ ) ≡
1
2 s∂2

τ + ∑
m�3 αm[i∂τ ]m, with αm ≡ βm/[m!|β2|T m−2

0 ],
whereas the operator for the coupling dispersion now has
the form κ(i∂τ ) ≡ ∑

m�0
κm

m!T m
0

[i∂τ ]m, and the dimensionless
function r(τ ) is obtained by rescaling time t with T0 in the
response function R(t).

Equation (2) is used later to investigate the LB generation
and its dynamic in WAs. In order to simulate Eq. (2) one
needs to calculate the dispersion parameter D and the coupling
coefficient κ as functions of the wavelength. In the rest of this
paper, as a practical example we specify the parameters for the
WA as follows: the WA is formed by identical conventional
step-index fibers with cladding made of fused silica and core
made of silica with 1.8% dopant GeO2. The dopant at the low
concentration used here is only to ensure that the refractive
index of the core (which has been well approximated with the
Sellmeier equation) is slightly larger than that of the cladding.
The core radius is 6 μm and the center-to-center spacing
between two adjacent cores is 35.42 μm. Recent advances
in femtosecond-laser writing technologies for WAs of fused
silica (see [42]) make the above-proposed WA feasible.

With this specific WA one can calculate the coupling
coefficient between adjacent waveguides as a function of the
wavelength [43]. The obtained result is shown in Fig. 1(a). One
can see that the longer the wavelength λ the larger the coupling
coefficient κ . This is expected because for longer wavelengths
the evanescent field spreads out more into the cladding, thus
leading to an increase of the coupling coefficient. This feature
of the coupling coefficient is essential in the dynamics of
the supercontinuum in WAs [23,40]. The inset in Fig. 1(a)
shows the zoomed version of Fig. 1(a) in the region of shorter
wavelengths. The solid blue curve in Fig. 1(b) represents
the dispersion parameter D of each individual waveguide as
a function of the wavelength. The dispersion is anomalous
(D > 0) when λ > 1.2905 μm and normal (D < 0) for shorter
wavelengths. The dotted red vertical line in Fig. 1(b) indicates
the position of the cutoff wavelength λCO = 1.3308 μm; thus
for λ > λCO waveguides are single mode, whereas for shorter
wavelengths they are multimode. The inset in Fig. 1(b) plots
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the zoomed version of Fig. 1(b) in the region around the cutoff
wavelength.

III. BROAD LIGHT BULLET GENERATION AND ITS
DYNAMICS IN A SIMPLIFIED MODEL

In this section we investigate the generation of broad LBs in
WAs in the anomalous GVD regime where we ignore HOD, the
coupling dispersion, the self-steepening effect, and the Raman
effect. In this case Eq. (2) is much simplified as follows:

i∂ξ an + 1
2∂2

τ an + 1
2η[an+1 + an−1] + |an|2an = 0, (3)

with η = LDκ(ω0). As mentioned above, this simplified model
is often used to investigate LBs in WAs. In [35] the wavelength
dependence of κ and HOD was considered in order to study
spatiotemporal quasisolitons in arrays of silicon-on-insulator
photonic wires, but the linear loss of silicon is much higher
than that of silica, and one also needs to include two-photon
absorption for silicon (as done in [35]); thus the nonlinearity
of silicon is significantly different from that of silica used in
this paper. Now we write Eq. (3) in the form

i∂ξ an + 1
2∂2

τ an + 1
2η[an+1 − 2an + an−1]

+ ηan + |an|2an = 0 (4)

and eliminate the linear term ηan through the transformation
a′

n = anexp(iηξ ) [see also this transformation to convert
Eq. (2.5.3) into Eq. (2.5.4) in [6]], finally we get the following
equation in the continuum limit:

i∂ξ an + 1
2∂2

τ an + 1
2η∂2

nan + |an|2an = 0. (5)

Note that for the sake of making notations simple we drop the
prime symbol in superscripts in Eq. (5). The above-mentioned
parameters of the WA used in this work are deliberately
chosen such that the dimensionless factor η = 1. However,
even if η �= 1, one can always rescale the variable n = √

ηm

in Eq. (5) such that its counterpart in the new equation is
equal to unity. Therefore, in what follows the factor η will
be put equal to unity. The profiles of LBs in the continuous
media were numerically found in [24] based on Eq. (5),
where n plays a role of a continuous spatial variable. In
that case it is obvious that if η = 1 the transverse profile
of LBs depends on the variable ρ = √

τ 2 + n2 [24]. However,
as mentioned in the introduction, in continuous media, LBs
are unstable because small fluctuations in the intensity, beam
size, or pulse width will lead to a phenomenon known as
spatiotemporal collapse [5,24]. It is reasonable to expect that
in the continuum limit [when the transverse size of LBs in
the (n,τ ) plane is large enough] broad LBs in WAs will have
profiles similar to those of LBs found in continuous media.
Indeed, in what follows we show the generation of broad LBs
by using the following initial condition at the WA input for
simulating Eq. (3): an(τ,0) = b0sech(n/4)sech(τ/4), where
the initial peak amplitude b0 will be varied to investigate the LB
generation. The input parameters are the central wavelength
λ0 = 1.55 μm and the time scale T0 = 50 fs; thus the
initial pulse duration at the FWHM level for amplitude is
calculated to be TFWHM 525 fs. With these input parameters, the
dispersion length (also the length scale here) is calculated to be
LD = 10.07 cm and the power scale P0 = 10.914 kW. It is
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FIG. 2. (Color online) (a,b) Generation of a broad light bullet in
the (n,τ,ξ ) and (k,λ,ξ ) spaces, respectively, when b0 = 0.302. The
first and last frames in (a) are shown in (c) and (d), respectively, in
the (n,τ ) plane.

also helpful to compare the power scale P0 with the critical
power Pcr = 3.77λ2

0/8πn0n2 � 9.6 MW for self-focusing of
a Gaussian beam in fused silica at the central wavelength
λ0 [44], where n0 and n2 are the linear and nonlinear refractive
indices of fused silica at λ0, respectively. The input pulse
covers 12 waveguides at the FWHM level. The total number
of waveguides used here is N = 141. The evolution of the
pulse is illustrated in Fig. 2(a) in the (n,τ,ξ ) space for the
initial peak amplitude b0 = 0.302. The first and last frames in
Fig. 2(a) are shown in Figs. 2(c) and 2(d), respectively, in the
(n,τ ) plane.

As shown in Fig. 2(a), at the initial stage the profile of the
pulse is adjusted, then after reaching the propagation distance
ξ � 45 the pulse profile becomes very stable, and the pulse
now propagates like a LB without any significant distortion
in profile and amplitude. As clearly shown in Fig. 2(c), the
initial transversal profile of the pulse is reminiscent of a
square, in particular in the periphery where amplitudes are
weak. However, at the final frame [see Fig. 2(d)], like LBs in
continuous media [24], the established profile of the LB looks
like a perfect circle and only depends on the variable ρ. Note
that for parameters used in Fig. 2 the factor η = 1 and we get
the LB with circular profiles. If η �= 1, one will get LBs with
oval profiles. Note that in physical units the peak amplitude
(around 0.3 in dimensionless units) in Fig. 2(a) will correspond
to the peak power around 0.09P0 � 1 kW, and the time scale
T0 = 50 fs as mentioned above.

Now if we take the Fourier transform a(n,τ,ξ ) → ã(k,λ,ξ )
(time domain τ and space domain n are transformed into
wavelength domain λ and transverse wave-number domain
k, respectively), then from Fig. 2(a) we obtain Fig. 2(b),
which shows the LB evolution in the (k,λ,ξ ) space. As shown
in Fig. 2(b), the profile of the established LB in frequency
domains k and λ is also stable during propagation. Note that,
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FIG. 3. (Color online) (a,b) Pulse propagation in the central
waveguide n = 0 and with the delay τ = 0, respectively. (c,d)
The dashed black curves represent the input signal with the sech
profile; solid blue curves represent the output profiles; solid red curves
represent the curves fitted by the sech function, which are practically
on top of the solid blue curves.

although the initial profile of the pulse launched into WAs is
not exactly the one for a LB, during propagation the pulse
will nevertheless adjust its profile toward that of a LB. This
feature shows that broad LBs in WAs form spontaneously and
are quite robust.

We now analyze two special sections of Fig. 2(a) along the
ξ axis. The section for the central waveguide (n = 0) is shown
in Fig. 3(a), whereas the section for the central delay (τ = 0)
is shown in Fig. 3(b). The common feature of pulse evolution
in Figs. 3(a) and 3(b) is that at the beginning the pulse is
slightly compressed in both delay domain τ and space domain
n, and then from a propagation distance of about ξ � 45 the
established profile of the LB is very stable. Note also that due
to the discreteness of the space variable n details in Fig. 3(b)
are rougher than in Fig. 3(a). The dashed (black) curves in
Figs. 3(c) and 3(d) represent the input signal with sech profiles
in Figs. 3(a) and 3(b), respectively. Meanwhile, the solid blue
curves in Figs. 3(c) and 3(d) represent the output profiles
in Figs. 3(a) and 3(b), respectively. The solid red curves in
Figs. 3(c) and 3(d) represent the curves fitted by sech functions
a0(τ ) = 0.3483sech(0.303τ ) and an = 0.3483sech(0.303n),
respectively. These fitted curves (red) are so similar to the
calculated output profiles (blue) that they are almost on top of
each other and one can only see extremely small differences
between these curves at weak amplitudes (a0,n < 0.08) by
enlarging Figs. 3(c) and 3(d). So, in the case η = 1, due to the
circular profile of the LB shown in Fig. 2(d) as discussed
above, the LB profile can be well approximated by the
sech function, which has only one variable ρ = √

τ 2 + n2 as
follows: a(ρ) = 0.3483sech(0.303ρ). It is worth emphasizing
that, for broad LBs, these fitted parameters inside (0.303)
and outside (0.3483) the sech function comprise only one
specific set of parameters among many others. Note also that
the well-known fundamental temporal soliton in a single fiber
has the profile u(τ ) = qsech(qτ ) with the same factor q inside
and outside the sech function [41].
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FIG. 4. (Color online) (a,b) Evolution of a pulse in the (n,τ,ξ )
space when b0 = 0.28 and 0.32, respectively.

In Figs. 2 and 3 we use the initial profile an(τ,0) =
b0sech(n/4)sech(τ/4) with b0 = 0.302 and, as a result, a broad
LB is generated during propagation. If we now launch a pulse
into WAs with lower initial peak amplitudes, it is reasonable
to expect that in this case the diffraction-based broadening
prevails over the nonlinearity-based focusing and pulses will
spread out in both time and space. Indeed, this is the case as
shown in Fig. 4(a) with b0 = 0.28. In contrast, if initial peak
amplitudes are higher, then one can expect the focusing in both
space and time during propagation. This is demonstrated in
Fig. 4(b) with b0 = 0.32. After the first maximum compression
in space and time at ξ � 54 (where the energy of the pulse is
practically localized only in the central waveguide) the pulse
spreads out again, then gets compressed, and that periodic
breathing of the pulse repeats again and again. However, as
clearly shown in Fig. 4(b), during this periodic propagation the
pulse is much localized as compared to the input pulse such
that at its maximum broadening the pulse now only covers
three waveguides at the FWHM level (compared to 12 at the
input). Of course, the closer the initial peak amplitude to the
value b0 = 0.302 the better the pulse will conserve its shape
during propagation, like the LB shown in Figs. 2 and 3.

Figures 5(a) and 5(b) show the evolution of pulses in
the (n,τ,ξ ) space when we increase further the initial peak
amplitude of the pulse to the value b0 = 0.56 and 0.84,
respectively. The last frame in Figs. 5(a) and 5(b) is shown
in Figs. 5(c) and 5(d), respectively, in the (n,τ ) plane. As
shown in Figs. 5(a) and 5(c) (when b0 = 0.56) the initial pulse
is split in time into three pulses: two intense compressed pulses
which are symmetric with respect to the central delay τ = 0
and a weaker and broader pulse in the center around τ = 0. All
three pulses are spatially symmetric with respect to the central
waveguide with position n = 0. The two intense compressed
pulses are extremely localized in both space and time where
their peak amplitudes in the last frame shown in Fig. 5(c) are
2.58, 0.297, and 0.082 for waveguides with position n = 0,
1, and 2, respectively. These two intense pulses with narrow
states are quite robust during propagation and have profiles
similar to self-trapped LBs in WAs reported in [26]. So, when
b0 = 0.56 the initial pulse has enough energy to form only
two narrow LBs in leading and trailing tails, and the residue
of its energy forms a weak pulse around the central delay τ =
0. If we increase the initial peak amplitude further up to the
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FIG. 5. (Color online) (a,b) Evolution of a pulse in the (n,τ,ξ )
space when b0 = 0.56 and 0.84, respectively.

value b0 = 0.84 [see Figs. 5(b) and 5(d)], the initial pulse will
have enough energy to form three self-trapped LBs which are
also symmetric with respect to the central delay τ = 0. In this
case three LBs are localized even more strongly than those in
Figs. 5(a) and 5(c). Indeed, in the last frame shown in Fig. 5(d)
the peak amplitudes of three LBs are 3.608, 0.1174, and 0.04
for waveguides with position n = 0, 1, and 2, respectively.
Therefore, in this case one can say that almost all the energy
of LBs is localized only in the central waveguide with position
n = 0.

IV. INFLUENCE OF DISTURBING FACTORS ON THE
GENERATION AND DYNAMICS OF LIGHT BULLETS

In the previous section we analyzed the generation and
dynamics of broad LBs in a simplified model in the absence
of several disturbing factors such as the Raman effect, HOD,
and the coupling dispersion. All these effects play important
roles in pulses’ dynamics, in particular for short pulses having
their durations in the femtosecond range [41]. However, as
mentioned above, these factors are often neglected without
any justification in investigating LBs in WAs. In this section
we analyze the influence of these disturbing factors on the
generation and dynamics of LBs in WAs made of silica. In
order to do that, one needs to use the full model with Eq. (2)
instead of the simplified model with Eq. (3). We first study
the influence of the Raman effect without considering HOD
and the coupling dispersion. It is well known that the strength
of the Raman effect is inversely proportional to T 4

p , where
Tp is the pulse duration at the moment of interest [45]. As
reported in [46], even for a pulse with shorter initial duration
(TFWHM = 262 fs) than that used in this work, the Raman
effect plays a crucial role in pulse dynamics only right after
the maximum compression of the pulse in the time domain
and the simultaneous maximum broadening in the frequency
domain, but the Raman effect plays a negligible role in pulse
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FIG. 6. (Color online) (a,b) Evolution of a broad light bullet in
the (n,τ,ξ ) space when the Raman effect and coupling dispersion are
considered, respectively. The initial peak amplitude b0 = 0.302 and
0.3 in (a) and (b), respectively. All other parameters are the same as
in Fig. 2.

dynamics at the very beginning of the pulse propagation when
the significant temporal compression has not taken place yet.
So, one can expect that for the LB shown in Fig. 2 the Raman
effect is not important. Indeed, this is the case, as shown in
Fig. 6(a), where every condition and parameter is the same as
in Fig. 2 with the only exception that now the Raman effect
is considered in obtaining Fig. 6(a). By comparing Figs. 2(a)
and 6(a) one can hardly see any visible differences. Actually,
due to the Raman effect the LB is very slightly inclined in
the time domain; thus now the LB center in the last frame in
Fig. 6(a) is at τc = 0.7 as compared to τc = 0 in Fig. 2(d). Our
simulations also reveal that HOD does not play a significant
role for the LB shown in Fig. 2. Indeed, if we only consider
HOD and ignore all other disturbing factors, then the LB
shown in Fig. 2 will be only very slightly inclined in the
time domain; thus the LB center in the last frame will now
be at τc = 0.2 (not shown here) as compared to τc = 0
in Fig. 2(d). This is understandable, because as shown in
Fig. 2(b) the spectrum of this LB is fairly narrow, with the
outer contour in Fig. 2(b) being spanned from 1540–1560 nm
where the dispersion parameter D shown in Fig. 1 is only
varied in the range 19 < D < 20 in its conventional unit
[ps/(nm km)]; thus D changes about 5%. In this specific case,
one can ignore the Raman and HOD effects in the dynamics
of the LB in Fig. 2. However, the influence of the coupling
dispersion on the dynamics of the LB shown in Fig. 2 is
more noticeable with specific parameters used in this work.
With parameters used in this work, in the wavelength interval
1540–1560 nm the coupling coefficient is varied in the range
0.0046 < κ < 0.0053 mm−1; thus κ changes about 14%.
Figure 6(b) shows the LB dynamics where every condition and
parameter is the same as in Fig. 2 with only two exceptions that
now the coupling dispersion is considered and the initial peak
amplitude b0 = 0.3 is used in Fig. 6(b) instead of the value
0.302 in Fig. 2. As clearly shown in Fig. 6(b), the LB is
now significantly inclined in the time domain and the LB
center in the last frame in Fig. 6(b) is at τc = −18.5. With
the initial peak amplitude b0 = 0.3 used in Fig. 6(b) the LB
is formed during propagation. If b0 = 0.302 is used, then
the only difference with the current Fig. 6(b) is that after
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reaching the propagation distance ξ � 50 the spatiotemporal
pulse in Fig. 6(b) will be slightly and gradually compressed
(not shown here) in both time and space domains. Therefore,
here we can make a local conclusion that the broad light bullet
shown in Fig. 2 is robust and can retain its shape for long
propagation distances even in the presence of disturbing factors
such as the Raman effect, HOD, and coupling dispersion.
This is expected because these disturbing factors are crucial
only when the spectra become wide enough (e.g., due to the
strong temporal compression as shown below). For the LB
in Fig. 2 the temporal compression, and thus the spectral
broadening, almost do not take place during propagation.
As a result, the above-mentioned disturbing factors are not
strong enough to break the establishment of the LB during
propagation. In addition, our simulations (not shown here)
with input conditions being the right profile of broad LBs
taken from Fig. 2(d) and superposed with some random weak
noise show that broad LBs are not destroyed by weak noise.
This feature also indicates that broad LBs in WAs are robust.

However, the disturbing factors will be crucial if the
significant temporal compression of the pulse takes place
during propagation. This is dramatically demonstrated in Fig. 7
when the pulse and parameters in Fig. 4(b) with b0 = 0.32 are
used, but now in the presence of the Raman effect. Figure 7(a)
shows the pulse propagation in the (n,τ,ξ ) space, whereas
the pulse propagation in the central waveguide (with position
n = 0) is shown in Fig. 7(b). Note that, although the step
along the ξ axis in simulations is small enough, due to a
huge amount of data obtained during simulations for getting
Figs. 7(a) and 7(b) we are able to pick only 60 frames along the
ξ axis to show the result. Figures 7(c) and 7(d) show the pulse
profile at the final frame in Fig. 7(a) at the central waveguide
and at the delay τ = 18.37, respectively. In Figs. 7(c) and 7(d)
the dashed (blue) curves are the results obtained through
direct pulse propagation simulation, whereas the solid (red)
curves are fitted with sech functions. At the beginning of the
propagation (ξ < 50) the pulse is only slightly compressed
in time and space; thus the disturbing factors do not play
big roles in the pulse dynamics. As a result, at this stage
the pulse dynamics in Figs. 4(b) and 7(a) are almost the
same. However, at longer distances, its temporal compression
is very strong, and thus its spectral broadening is enhanced
enough to make all disturbing factors important now. After
the maximum spatiotemporal compression at ξ � 54, the
dynamics of the pulse in Fig. 7(a) (where the Raman effect
is included) is totally different from that shown in Fig. 4(b)
(where the Raman effect is excluded). In the latter case [see
Fig. 4(b)] the pulse breathing takes place in both space (in
the n axis) and time, and the pulse center (at τ = 0) does not
change during propagation. However, in Fig. 7(a) most of the
energy of the pulse is trapped in the central waveguide with
position n = 0 and two neighboring waveguides with indices
n = 1, − 1 [see Fig. 7(d)]. In the time domain, due to the
Raman effect the trapped pulse is also strongly compressed
and bent toward the trailing tail (τ > 0) [see Fig. 7(b)]. Note
that after reaching the bottom part in the time window used
in simulations [see the white arrow at τ � +40 in Fig. 7(b)],
physically, the pulse will be bent further to the trailing tail (τ >

0); however, visually, it will emerge at the top part of the time
window [see the white arrow at τ � −40 in Fig. 7(b)]. This
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FIG. 7. (Color online) (a,b) Evolution of a pulse with Raman
effect and b0 = 0.32 in the (n,τ,ξ ) space and in the (τ,ξ ) plane for
the central waveguide (n = 0), respectively. (c,d) The pulse profile at
the final frame in (a) at the central waveguide and at the delay τ =
18.37, respectively. The dashed (blue) curves in (c,d) are the results
obtained through direct pulse propagation simulation, whereas the
solid (red) curves are fitted with sech functions. The first and last
frames in (a) are shown in (e) and (f), respectively, in the (k,λ) plane
and on a logarithmic scale.

feature is common in the split-step Fourier technique and the
accuracy of simulations is not influenced by the width of the
time window. It is worth mentioning that after the generation
of the trapped pulse its width in time and space (in the n

axis) is conserved during propagation, and as demonstrated
in Figs. 7(a) and 7(b) this trapped light bullet is very robust.
Due to the Raman effect, the pulse profile in the time domain
is now slightly asymmetric [see the dashed (blue) curve in
Fig. 7(c)]. In Figs. 7(e) and 7(f) we plot the contour plots
of the first and last frames in Fig. 7(a), but now in the (k,λ)
plane and on a logarithmic scale. The spectral broadening and
Raman-based redshift are evident from Figs. 7(e) and 7(f).
Note that although the energy of the pulse is strongly localized
in Figs. 5 and 7 the maximum peak intensity in these figures is
roughly estimated to be 16P0/πr2 � 1.6 × 1011 W/cm2 (with
r = 6 μm being the core radius used in this work), which is
well below the intensity threshold Icr � 1013 W/cm2 for bulk
optical breakdown of transparent solids using a femtosecond
laser pulse [47]. Therefore, in this work we can safely neglect
the plasma generation effect.
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We would like to stress that the results shown in Fig. 7
are obtained when the Raman effect is included, but HOD
and the coupling dispersion are excluded. If all these factors
are included, then after the maximum temporal compression
one can obtain the supercontinuum generation in both wave-
number and frequency domains (see [23] for more details).
In this case, it will be more difficult to generate narrow LBs.
Thus, one needs to carefully optimize parameters of WAs and
input pulse such that HOD and coupling dispersion are less
pronounced, and as a result narrow LBs can be generated.
Note that, unlike narrow LBs, as mentioned above, broad LBs
shown in Fig. 2 still can be easily formed and conserve their
shape for long propagation distances even under the combined
influence of all these disturbing factors.

V. CONCLUSIONS

In conclusion, we have demonstrated with accurate nu-
merical simulations that broad LBs can be established during

propagation of pulses which are slightly different from LBs at
the input of waveguide arrays made of material with Kerr-type
nonlinearity. These broad LBs can be analytically constructed
with a high degree of accuracy by using the hyperbolic
secant function. The discrete nature of waveguide arrays helps
arrest the collapse of these LBs even in the presence of the
Raman effect, coupling dispersion, and high-order dispersion.
However, these broad LBs are only metastable as compared to
narrow LBs whose energy is almost located in three adjacent
waveguides. These narrow LBs are extremely robust even in
the presence of the Raman effect and can be generated from
initial pulses whose profiles are too different from established
ones of narrow LBs. We expect that LBs will find various
applications in science and technology in the future.
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