
ZDB-High performance key-value store

Thanh Nguyen Trung, Minh Nguyen Hieu

Information Technology Faculty

Le Quy Don Technical University

Ha Noi, Viet Nam

thanhnt@vng.com.vn, hieuminhmta@ymail.com

Abstract-Nowadays key-value stores play a critical part in
large-scale high performance applications. Attention paid to
key-value stores prove the importance of the key-value store
that have already been used. This paper presents ZDB which
is a high performance persistent key-value store designed for
optimizing reading and writing operations. This key-value store
support sequential write and single disk seek for read and write
operations. Key contributions of this paper are the principles in
architecture, design and implementation of a high performance
persistent key-value store. This is achieved by using a data file
structure organized as commit log storage where every new
data is appended to the end of the data file. An in memory
index is used for random reading. ZDB architecture optimize
the index of key-value store for auto incremental integer keys
which can be applied in storing many real life data efficiently
with minimize memory overhead and reduce the complexity
for partitioning data.

Keywords-key-value; nosql; storage; zdb

I. INTRODUCTION

High-performance key-value stores have been given large

attention in several domains, equally in professional and

academics. E-commerce related platforms [12], data de­

duplication [17], [11], [10], photo merchants [9], web object

caching [6], [8], [13] etc. Attention paid to key-value stores

prove the importance of the key-value store that have al­

ready been used. Before this research, we had used some

famous key/value storage libraries using B-tree and on-disk

hash table for building persistent cache storage system for

applications. When the number of item in database increase

and the data of the application grow to millions of items, the

libraries we used worked more slowly for both reading and

writing operations. It is therefore important to implement

a simple and high performance persistent key-value store

which can perform better than the existing key-value stores

both in memory consumption and in speed.

Some famous key-value storage such as Berkeley DB

[5] (BDB) used B-tree structure or hash table often store

the index in a file on the disk. For each database writing

operation, it needs at least two disk seeking [23], [16], the

first seeking for updating B-tree or hash table, and the second

for updating data. In case of re-structured B-tree, it needs

more disk seek in reading/writing operations. Consequently

data growth means writing rate increases thus making B-tree

storage slower.

978-1-4799-3230-6113/$3l.00 ©2013 IEEE 311

With popular commodity hard disk and SSD nowadays,

sequential disk writing has the best performance [6], [16]

so the strategy for the new key-value store is to support se­

quential data writing, support random writing, and minimize

seek operations.

To use all capacity of limited 10 resources, achieve

high-performance and low latency, key-value storage must

minimize number of disk seeking in every operation and

all writing operations should be sequential or append only

on disk. This research presents algorithms that implement

efficient storage of key-value data on drive. They will min­

imize the required number of disk seeking. The algorithm

applications are quite general, hence applicable many other

applications as well. This research is done to optimize disk

reading/writing operation in data services of applications.

Understanding the specification of data types especially

the type of key in key-value pair is important to design the

scalable store system for that data. There are several popular

key types: variable-length string, fixed size binary, random

integers, auto incremental integer ... In popular applications,

incremental integer keys are used widely in database design.

For example: the identification of Users, Feeds, Documents,

COlmnercial Transactions ... So optimizing the key-value

store for auto incremental integer keys is very meaningful.

This research firstly optimizes memory consumption of

index of key-value store for auto incremental integer keys.

It also reduces the complexity of partitioning data. This

research also extends the work for supporting variable length

string keys in simple way.

These are main contributions of this paper:

• The design and implementation of flat index and ran­

dom readable log storage that make high performance,

low latency key-value store

• Minimize memory usage of the index and optimize for

auto incremental integer keys and make the zero false

positive rate of flash/disk reads key-value store.

• Remove some disadvantage of previous research in

design and implementation of key-value store.

II. ZDB KEy-VALUE STORAGE SYS TEM

ZDB is designed for optimizing reading and wntmg

operations. It needs at most one disk seek for the operations.

Partitioning Manager

ZDB Store ZDB Store

ZDB Flat Table ZDB Flat Table

File Mapping Memory Index File Mapping Memory Index

Figure 1. ZDB architecture

In ZDB, all writing must be sequential. Consequently, the

data file structure is organized as commit log storage every

new data is appended to the end of the data file. For random

reading, an in-memory index is used to locate value position

of a key in commit log storage. Commit log and the in­

memory index is managed by ZDB Flat Table while the

ZDB Flat Table is managed by ZDB Store. Hash function is

used in calculating the appropriate file to store the key-value

pair. Figure 1 shows the basic structure of ZDB architecture.

A. ZDB Flat Index

The index is used to locate posItIOn of key-value pair

in data file. Dictionary data structure [20] such as tree,

hash table can be used for storing index. But for auto

incremental integer keys dictionary data structure is not

optimal in memory consumption and performance.

With integer keys, there are advantages for using linear

arrays over the use of trees or hash tables. The difference

between a hash table and an array is that accessing an

element in a plain array only requires finding an index of a

particular element while hash tables using a hash function

to generate an index for a particular key, then use the index

to access the bucket that contain key and value in the hash

table. In the structure of hash table both key and value are

stored in memory. For integer keys, we can use key as the

index of item in linear array and we can get item from key

very simple without storing keys.

For an individual element, a hash table has an insertion

time of 0(1) and a look-up time of 0(1) [20]. This is

assuming that the hashing algorithm can work perfectly and

collisions are managed properly. On the other hand, the

access time of an array is 0 (1) for a given element. Arrays

are very simple to use. In addition, there is no overhead in

generating an index. Moreover, there is no need for collision

detecting. ZDB uses append-only mode, the data is written

to the end of a file and the indices is already predetermined,

the array is used for storing position of key-value entry in

the data file. To keep the array index persistent, file mapping

is used.

ZDB optimize the index for auto incremental integer keys,

and use array to store this index for minimize memory usage

which have zero overhead for keys. ZDB Flat Index is an

array of entry position.
1) ZDB Flat Index parameters: For each partition in

ZDB, the index parameters describe characteristics such as

the size of the array, the range of the array and the memory

consumption ranges.

• Key range

Key range in a partition is called [kmin, kmax) where kmin
is the start of the index while kmax - 1 is the last index in

the array. The range is inclusive of the boundary value.

• Index Array Size

The size of the array is obtained from the range as this

equation:

ArraySize = kmax - kmin (1)

Basing on the values of the range, the ith item in the

array refers to the position of the key (i + kmin) in the data

file. It is also imperative to note that the size of an item

depends on the maximum file size. In ZDB, this may be 4,

5, 6, 7, or 8 bytes for easy configuration and for tuning the

performance and maximum data file size of the key-value

persistent store. Comparing ZDB and FAWN, the size of

an item can only be 4 making it to be rigid not to provide

312 2013 Third World Congress on Information and Communication Technologies (WICT)

options to tune the performance of the key-value store. In

ZDB, data in a partition is stored in multiple files using a

simple hash function to decide which file to store the key.

The hash function must be efficient for better performance

of the key-value store. The choice of the key and the basics

of the key-value store are described in the sections below.

• Index Memory Consumption

In ZDB, the memory consumption is equal to the size

of the array multiplied by the size of the array item. As

aforementioned, memory is only used to store the position

of the entry and not the key.

2) ZDB Flat Index example: In social networks such as

Facebook [1] and Flickr [2] , and in email hosting websites

such as GMail [14], the key may refer to the User ID while

the value is the profile which is serialized to binary or string.

The story is not different with Zing Me [22] because login

information requires a User name and password before the

user profile is displayed. By knowing the User ID which is

the key, the profile of the user can be retrieved from ZDB.

It should be understood that ZDB uses a predefined a range

of keys for example [0, 1000000) in a partition. The size of

the array is 1000000. If the number of data files is 16, the

data with key k would be stored in k modulus 16. Using 4

bytes for each index item in the index array, the maximum

file size would be 4 GB and the total size would be 64GB

for all the files. Since the index size is 1000000, the memory

size for the index is 4* 1000000 bytes (about 4MB). In one

partition, the size of the index table can be several hundreds.

B. ZDB Log Storage

Key-value pairs are stored in ZDB data file sequentially

in every writing operation. For each writing, the following

data are appended to data file: Entry Information (EI), Value,

Key.

Entry Information consists of: Value Size: 4bytes, Re­

served Size: 4 bytes, Time stamp: 8bytes, Value check sum:

1 byte. The layout of ZDB Log Storage files are describe in

Figure 2

C. ZDB Flat Table

The ZDB Flat Table consists of a ZDB Flat Index and

multiple ZDB Log storage data files. The ZDB Flat Index

is used for looking up the position of key-value pair in

ZDB Log Storage data file. ZDB Flat table have some

interfacing commands to interact with the data store include

get, put, and remove. ZDB Flat Table also has 2 iterating

command: Key-order iterating and insertion order iterating.

With iterating commands, it is able to can through the table

to get all key-value pair.

• Put

Put is used for add or update key-value pair to the table. This

means that the value which is the data and the reference

which is the key should be stored in the data files and

the index array respectively. Consequently, the input for the

File 1

Entry Info
+valueSize: uint32
+reservedSize: uint32
+timeStamp: uint64_t
+valueCheckSum: byte

Each element in index array
is a position of a key-value

pair In zdb data Illes.

Figure 2. Data file layout

put command is the key and the value both provided. The

data file to store the entry is determined by hash function.

The current size of the data file is obtained and set to the

(key - kmin)th item in the index array. The entry is then

appended to the end of the data file.

• Get

To get a value referenced in the ZDB Flat table by the index,

the input to the get command is the key while the output

is the value. The file that stores the value is determined by

hash function. The position of the entry is looked up in the

index array (key - kmin)th item. The existence of the entry

is determined by whether the position is greater than O. If the

position is greater than 0, the position of the file is sought in

the array and the entry is read to produce the output which

is the value. Get operation of ZDB has zero false positive

disk read.

• Remove

The remove command is meant to eliminate the entry from

both the array index and the data file. The input required

to remove an entry is only the key. With the key, the hash

function is used to calculate the data file holding the entry.

The item is set to -1 in the index array. At the same time, an

entry info that indicates the pair with the key was removed

is created and append to data file. Entry Information for

indicate removed key:

Value Size: 0, Reserved Size: 0, Time stamp:O, Value

Check Sum: 0

• Iterate

Other important actions in the key-value store include se­

quence iterating which is done by scanning each ZDB Flat

Table to iterate all the key-value pairs. A hash order or

insertion order can be used to iterate through all the key­

value pairs.

For key-order iterating, ZDB Flat Index array are scanned,

if the item in array are greater than or equal to 0, the key

associated with that item has the value in the ZDB Log

2013 Third World Congress on Information and Communication Technologies (WICT) 313

Append only Put Operation Get Operation Remove Operation

Detect data file Detect data file
for key using hash function:
filelD = hash(key)% numFile

Determine data file for key using hash function:
filelD = hash(key)% numFile for key using hash function:

filelD = hash(key)% numFile

pas = size of data file
create entry info with keyJvalue

entry.valueSize = key. length
entry. reserved Size = key.length + reservedsize

Get Entry position in file
by looking up in flat

index array

pas = size of data file
create empty entry info with key

entry.valuesize = 0

entry.reservedsize = 0
pos = index[key-offsetl

Yes

Figure 3. Put, Get, Remove algoritluns of ZDB Flat Table

Storage, and the value are read for returning to the iterating

operation.

For insertion order, each ZDB Log Storage data file are

scan and read each Entry Information and key-value pair

sequentially. For each read key-value pair, if its position

in ZDB Log Storage data file equal to the position value

associated with the key in ZDB Flat index then it is a valid

key-value pair, so return it to the iterating operation.

D. ZDB Store

ZDB store uses ZDB Flat Tables functionality and handle

all data store request from applications. ZDB Store use

thrift protocol [19] to serve request from clients. ZDB Store

also provides compact operation for release disk usage by

multiple writing to a key. ZDB use chain replication [21] for

replicating data in cluster. Every writing operation work on

all nodes in the cluster asynchronously. ZDB use Eventually

consistent model from [12].

E. Variable Length String Keys

Currently, ZDB Flat index works as an in-memory for

storing position of key-value entry in data files. It has been

tested to work more efficiently with auto incremental integer

keys. However, it is not difficult to implement variable length

string keys into the key-store. For instance the key can be

indicated as a string key (skey) to differentiate it from integer

keys (iKey). A list of the string keys can be stored in a

bucket. It is imperative to note that string keys in a bucket,

they must have the same hash value. For storage, an iKey

and bucket pair is stored in ZDB as integer key and value

pair. All changes to the record of skeys are effected to the

bucket for updating the ZDB store. Each Flat Table is setup

with a size of about 227 for the string keys and Jenkins

hash function used to hash skey. The best ZDB performance

is obtained when the number of keys is estimated to the

size of ZDB Flat Index. The implementation basics can be

summarized as shown below:

• skey: string, iK ey = hash(skey)
• value: string
• pair consist of skey and value : {skey, value}
• bucket: list of pair, all string keys in this list have the

same hash value.

We cache and store {iK ey, bucket} in ZDB.

III. COMPARE To OTHER KEy-VALUE STORE

There are many key-value stores but each is based on its

concept. The first that can be compared to ZDB is SILT

(Small Index Large Table) [15]. SILT is a memory efficient,

high performance key-value store based on flash storage. It

scales to serve billions of key-value items on a single node.

Like most other key-value stores, SILT implements simple

exact-match hash table interface including PUT, GET, and

DELETE. ZDB implements all the three although the Delete

314 2013 Third World Congress on Information and Communication Technologies (WICT)

interface command is renamed to remove but it performs the

same functionality. Unlike ZDB, SILTs multi-store design

uses a series of basic key-value stores optimized for different

purposes. However, the basic design of SILTs LogStore

works like ZDB. This is because the LogStore uses a new

hash table to map keys to candidates. The main difference

is that the LogStore uses two hash functions [18] to map

the keys to the buckets and still have false positive disk

access while the ZDB have no false positive disk access. It

is also imperative to compare how the stores filled LogStore

in the case of SILT and a ZDB in the case of ZDB. When a

LogStore is full, it is converted into a HashStore in order to

handle the data and a new LogStore is created to handle the

new operations. In the case of a ZDB, the ZDB Flat Table

just care about the range of its key, for keys out of range, just

simply create new partition associate to the new key range.

ZDB can support large data file, and the maximum size of

data file is configurable, with SILT LogStore the maximum

size of data file is always 4G (because it used 4 bytes offset

pointer in the index). The value size and key size of SILT

are fixed; the value size of ZDB is variable.

In addition, there are situations where SILT has been used

in high writing rate applications. Challenges facing SILT

include difficulty in controlling the number of HashStore

because Each LogStore contains only 128k items. Basing

on the SILT paper, complexity on LogStore to HashStore

conversion is unclear. The paper does not mention the com­

plexity of memory consumption in the event of converting

or merging. The complexity of the effect of converting to

running SILT node is also not clear. As depicted in the

SILT paper, it is good at fixed-size key value with large and

variable length values. This is also the case with ZDB which

has high performance with large value sizes. The difference

comes in the complexity of SILT and ZDB SILT is difficult

to organize and is more complex whereas ZDB is simple

and easy to organize.

Fawn Data Store (FAWN DS) [7] is a log-structured key­

value store. In FAWN DS, each store contains values for the

key range associated with one virtual ID. It also supports

interfacing such as Store, Lookup, and Delete. This is based

on flash storage and operates within a constrained DRAM

available on wimpy nodes. This means that all writes to

the data store are sequential and all reads require a single

random access. Unlike ZDB which uses an array index to

store keys, the FAWN Data Store uses a hash index to map

160 bits keys to the actual key stored in memory to find a

location in the log. It then reads the full key from the log

and verifies the correctness of the key. ZDB is designed to

minimize reads from the memory to improve performance.

In that case, ZDB only uses one seek write and append only

mode for compacting.

While FAWN has a fixed memory index, ZDB index is

variable and can be tuned to improve the performance of the

key-value store in FAWN the maximum size of data file is

Table I
ONE WRITING THREAD

DBType
Cases

Key:4bytes Key: 4bytes Key: 4bytes

Value:4 bytes Value:1KB Value:100KB

LeveIDB 347246 5360 61

KC 343348 10268 1872

ZDB 294796 108790 4132

Table II
FOUR WRITING THREAD

DBType
Cases

Key:4bytes Key: 4bytes Key: 4bytes

Value:4 bytes Value:1KB Value:100KB

LeveIDB 369760 15004 90

KC 241800 80420 1920

ZDB 537204 128220 5248

always 4G. Another difference between ZDB and FAWN lies

in the hashing of original key in FAWN by SHA. It cannot

be iterated to determine the original key. On the other hand,

the original key in ZDB is not hashed and it can therefore

be iterated to find the original key. It is imperative to note

that with ZDB, there is no incorrect flash/hdd retrieval.

The performance of a key-value store comparatively is

important especially if users have to choose among various

available options.

The comparison in the performance of ZDB and two

famous open source persistent key-value stores: LevelDB

[4] and Kyoto Cabinet [3] using standard environment with:

Operating System: CentOS 64 bit , CPU: Xeon Quad core,

Memory: 8G DDR , HDD: 600G connected via SATA and

formatted with ext4 file system

These scenarios are used to evaluation:

• Writing 100 million key-value pair with variable value

size in one thread.

• Writing 100 million key-value pair with variable value

size in 4 threads.

• Random Reading key-value from stores

The benchmark results are shown on tables above, the

number in the table show the number of operations per

second. ZDB has the highest number of operations per

second in most scenarios. It is imperative to note that keys of

4 bytes and values of 100 Kilobytes have the lowest number

of operations because of the size of the values.

In the first instance, the key-value store engines are setup

with 1 writing thread with keys of 4 bytes and value of 4

bytes, keys of 4 bytes and values of 1024 bytes, and keys

of 4 bytes and values of 100KE. The results in TABLE I

above show that ZDB has the highest number of operations

per second and would take a shorter time writing the key­

value pairs in all the parameters except for values of 4 bytes

2013 Third World Congress on Information and Communication Technologies (WICT) 315

DBType

LevelDB

KC

ZDB

Table III
RANDOM READING

Cases

Key:4bytes Key: 4bytes

Value:4 bytes Value:lKB

304448 4629

1176300 45234

1326205 60325

Key: 4bytes

Value:lOOKB

62

5075

6232

The benchmark was repeated with four wntmg threads

and the results are shown in TABLE II. It shows that ZDB

work better in concurrent environment.

The benchmark was also set up for reading operation on

the data and the results show that ZDB had a higher number

of operations per second compared to Kyoto cabinet and

LevelDB. These results are shown in TABLE III

IV. CONCLUSION

ZDB uses simple techniques to create a high performance

persistent key-value store. To store a key-value pair in a file,

the evenly distribution hash function is used in selecting the

most appropriate file. Common interfacing commands such

as Put, Get, and Remove are used in ZDB. It has a flexible

item sizes to allow for tuning to enhance better performance.

To reduce the number transfers to and from memory, file

appending is used and one-seek write is used. It makes use of

a ZDB Flat Index to map key to position of key-value pairs

stored in data files. In all operation, ZDB needs at most one

disk seek. In addition, all writing operations are sequential.

For applications that require a simple high performance with

optimized disk reading and writing operations, especially for

large value, ZDB can be a good choice.

REFERENCES

[1] Facebook. http://facebook.com, 2013.

[2] Flickr. http://www.flickr.com. 2013.

[3] Kyoto cabinet: a straightforward implementation of dbm. http:
Ilfallabs.comikyotocabinet, 2013.

[4] Leveldb - a fast and lightweight key/value database library
by google. http://code.google.comJp/leveldb, 2013.

[5] Oracle berkeley db 12c: Persistent key value store. http://
www.oracle.com/technetworklproducts/berkeleydb. 2013.

[6] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and
S. Nath. Cheap and large cams for high performance data­
intensive networked systems. In NSDI, volume 10, pages
29-29, 2010.

[7] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. Fawn: A fast array of wimpy
nodes. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 1-14. ACM, 2009.

[8] A. Badam, K. Park, V. S. Pai, and L. L. Peterson. Hashcache:
Cache storage for the next billion. In NSDI, volume 9, pages
123-136, 2009.

[9] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al.
Finding a needle in haystack: Facebook's photo storage. In
OSDI, volume 10, pages 1-8, 2010.

[10] B. Debnath, S. Sengupta, and J. Li. Flashstore: high through­
put persistent key-value store. Proceedings of the VLDB
Endowment, 3(1-2):1414-1425, 2010.

[11] B. Debnath, S. Sengupta, and J. Li. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings
of the 2011 ACM SIGMOD 1nternational Conference on
Management of data, pages 25-36. ACM, 2011.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon's highly available key-value
store. In SOSP, volume 7, pages 205-220, 2007.

[13] B. Fitzpatrick. A distributed memory object caching system.
http://www.danga.com/memcached/. Accessed September 4,
2013.

[14] Google. Gmail. http://mail.google.com, 2013.

[15] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. Silt: A
memory-efficient, high-performance key-value store. In Pro­
ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 1-13. ACM, 2011.

[16] C. Min, K. Kim, H. Cho, S.-w. Lee, and Y I. Eom. Sfs:
Random write considered harmful in solid state drives. In
Proc. of the 10th USENIX Con! on File and Storage Tech,
2012.

[17] J. C. Mogul, Y-M. Chan, and T. Kelly. Design, implemen­
tation, and evaluation of duplicate transfer detection in http.
In NSDI, volume 4, pages 4--4, 2004.

[18] R. Pagh and F. F. Rodier. Cuckoo hashing. Journal of
Algorithms, 51(2):122-144, 2004.

[19] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable
cross-language services implementation. Facebook White
Paper, 5, 2007.

[20] T. van Dijk. Analysing and improving hash table perfor­
mance. 2009.

[21] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In OSDI,
volume 4, pages 91-104, 2004.

[22] VNG. Zing me. http://me.zing.vn, 2013.

[23] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos,
and W. A. Najjar. Microhash: An efficient index structure for
flash-based sensor devices. In FAST, volume 5, pages 3-3,
2005.

316 2013 Third World Congress on Information and Communication Technologies (WICT)

