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Abstract-In this paper, intuitionistic interval type-2 fuzzy c­
means clustering (InIT2FCM) method is proposed for the clus­
tering problems. Intuitionistic fuzzy sets (IFS) and intuitionistic 
type-2 fuzzy sets (InIT2FS) were introduced with the aim to 
better handle the uncertainty. Utilizing the advantages of the 
IFS and InT2FS, we have combined them with fuzzy clustering 
algorithms to overcome some drawbacks of the "conventional" 
FCM in handling uncertainty. The experiments were completed 
for different types of images which show the advantages of the 
proposed algorithms, especially with noisy images. 

Index Terms-Intuitionistic fuzzy sets, intuitionistic type-2 
fuzzy sets, Intuitionistic fuzzy c-means clustering, type-2 fuzzy 
c-means clustering. 

I. INTRODUCTION 

Clustering technique is applied in many fields such as 
data mining, pattern recognition, image processing etc. It is 
used to detect any structures or patterns in the data set, 
in which objects within the cluster level data show certain 
similarities. Clustering algorithms have different shapes from 
simple clustering as k-means and its variants [2], [3], [4], 
[5], development of family of fuzzy c-mean clustering (FCM) 
[14]. With the framework of fuzzy theory, fuzzy techniques 
are suitable for the development of new clustering algorithms 
because they are able to remove vagueness/imprecision in the 
data [16]. The most popular fuzzy clustering algorithms and 
applications were introduced in [17], [18], [28]. 

Recently, type-2 fuzzy sets are extensions of original fuzzy 
sets, have the advantage of handling uncertainty, which have 
been developed and applied to many different problems [6], 
[7], [8], [9] including data clustering problems. In addition, 
interval type-2 fuzzy c-means clustering (IT2FCM) [1] has 
developed a new way in the fuzzy clustering method in 
which FOU (footprint of uncertainty) is formed by using two 
fuzzifiers for handling uncertainty and making clustering more 
efficiently. 

Besides, the intutionistic fuzzy set (lFS) was introduced 
[19], [20] and used for representing the hesitance of an 
expert on determining the membership functions and the non­
membership functions. This capability has created a different 
research direction to handle the uncertainty based on IFS [22], 
[25], [26]. IFSs also have been recently used for the clustering 
problem [23], [24], [27]. 

In light of this brief review, we found the outstanding de­
velopments of the type-2 fuzzy sets and the intuitionistic fuzzy 
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sets. They are applied to handle the uncertainty. However, their 
uncertainty processing is not the same. When the uncertainty 
treatment of type-2 fuzzy sets based on the uncertain selection 
of membership functions, the intuitionistic fuzzy sets handle 
uncertainty based on the identification of the membership 
function and the non-membership function with the hesitance 
assessment function. We can see that the difference here is the 
uncertainty and the hesitance. Many people mistakenly believe 
the uncertainty and the hesitance are the same, we can see 
that there is a little difference between them, sometime in the 
uncertainty, there is still hesitance and vice versa. 

Therefore, in this paper, we introduced intuitionistic type-2 
fuzzy sets (InT2FS) on the basis of the extension of intuition 
fuzzy set. It has a ability to handle both the hesitance and 
the uncertainty. Next, intuitionistic type-2 fuzzy set is applied 
in fuzzy clustering algorithm for image segmentation. The 
experimental results show that the proposed algorithm gives 
better results than the traditional clustering method, especially 
with noisy images. 

Remain of the paper is organized as follows: Section II 
briefly introduces about some backgrounds about intuition­
istic fuzzy sets and fuzzy clustering; Section III proposes 
the intuitionistic fuzzy C-means clustering algorithm, Section 
III describes intuitionistic type-2 fuzzy C-means; Section IV 
offers some experimental results and section V concludes the 
paper. 

II. B ACK GROUND 

A. Intuitionistic Fuzzy sets 

Let X be an ordinary finite non-empty set. An IFS in X is 
an expression A given by: 

A = {(x,fLA (x) 'VA (x)): x E X} where fLA: X -7 [0,1] 
vA: X -7 [0,1] satisfy the condition fLA (x) +vA (x):S; 1. for 
all x EX. The numbers fL A (x) and V A (x) denote respectively 
the degree of membership and the degree of non-membership 
of the element x in set A. 

Considering IFSs(X) as the set of all the intuitionistic fuzzy 
sets in X. For each IFS A in X, the values 7r A(x) = 1-fL A (x)­
v A (x) is called the degree of uncertainty of x to A, or the 
degree of hesitancy of x to A. 

Note that for an IFS A, if fLA(x) = 0, then vA(x)+7r A(x) = 

1, and if fLA(x) = 1 then vA(x) = 0 and 7rA(x) = O. 



1) Entropy on intuition fuzzy sets: Most of the fuzzy 
algorithms select the best threshold t using the concept of 
fuzzy entropy. In this paper, we will focus on the definition 
and characterization of the intuitionistic fuzzy entropy. The 
entropy on IFSs is defined as a magnitude that measures the 
degree of IFS that a set is with respect to the fuzziness of this 
set which satisfy the following conditions: 

1. The entropy will be null when the set is a FSs(X), 
2. The entropy will be maximum if the set is an A-IFS; that 

is f-L(x) = v(x) = 0 for all x E X. 
3. As in fuzzy sets, the entropy of an IFS will be equal to 

its respective complement. 
4. If the degree of membership and the degree of non­

membership of each element increase, the sum will as well, 
and therefore, this set becomes more fuzzy, and therefore the 
entropy should decrease. One of the simplest expressions that 
satisfy the conditions previously mentioned in [?] 

1 n 

IE (1i.) = 
;;: L 7r .. dXk) 

k=1 
(1) 

Equation (1) is a base for segmentation algorithm. 

B. Fuzzy C-means Clustering 

Fuzzy c-means (FCM) was first introduced by Dunn in 
[13] and was improved by Bezdek in [14]. It is a method 
of clustering which allows a data point can belong to more 
than one cluster with different membership grades. It assumes 
that number of clusters c is known in priori and minimizes the 
objective function Um) as: 

where 

n c 

Jm(U, v) = L L (Uik)m(dik)2 
k=l i=l 

(2) 

and m is a constant, known as the fuzzifier, which controls 
the fuzziness of the resulting partition and can be any real 
number greater than 1 but generally it can be taken as 2 . 

Predefined parameters to the problem: the number of clus­
ters c(1 < c < n) , fuzifier m(1 < m < +(0) and error c. 

This algorithm can be briefly described as follows: 

Algorithm 1 Fuzzy c-means algorithm 
1 Step 1: Initialize centroid matrix 

V = [Vij ] , V(O) E RMXc,j = 0 

, by choosing random from dataset X = {Xi , Xi E RM}, i = 
l..n and the membership matrix UO by using the equation: 

2 

Uik = 
C 

1 _2_' 1 ::; i ::; c, 1 ::; k ::; n 
I: (� ) =-1 
j=l dJk 

3 Where dij = d(xj - Vi) = IIXj - Vi II 
4 Step 2: 
5 repeat: 

(3) 

6 Update the centroid matrix V(j) = [vi
j), v�

j), ... , v�j)] by 

n 

I: (Uik)mXk 

Vi = _k=
-:� =--___ , 1 ::; i ::; c 

I: (Uik)m 
k=l 

7 Update the membership matrix U(j) by using(3) 
8 Assign data Xj to cluster Ci if data (Ui (Xj) > Uk (Xj)), k = 

1, .. , C and j i= k. 
9 until: 

Max ( 1IU(H
l) - U(nll) ::; c 

10 Step 3: Return U and V. 

C. Interval Type-2 fuzzy C-means Clustering 

IT2FCM is an extension of the FCM clustering in which 
we use two fuzzification coefficients ml, m2 to form FOU, 
corresponding to the upper and lower values of membership; 
refer also to [1]. The use of fuzzifiers gives rise to different 
objective functions to be minimized: 

{ 
Jm1(U,v) = L:=l Lf=1(Uik)m1d;k 
Jm2(U, v) = L:=l Lf=l (Uik)m2d;k (4) 

in which dik = 11 Xk - Vi II is the Euclidean distance between 
the pattern Xk and the centroid of the cluster Vi, C is number 
of clusters and N is number of patterns. Upper/lower degrees 
of membership Uik and Y:.ik were similar to FCM algorithm 
except they were formed by two fuzzifiers ml , m2 (ml j m2) 

and determined as follows: 

1 

1 

in which i = I,C, k = I, N. 

Because each pattern comes with the membership interval 
as the bounds U and Y:., each centroid of the cluster is repre­
sented by the interval between vL and vR. Cluster centroids 
is computed in the same way in the case of FCM: 

in which i = 1, C. 

Vi = 
L:-;/

Uik)mXk 
(7) 

Lk=I(Uik)m 

Algorithm 2 Finding Centroids 
1 Step 1: Find '[iij , llij' by the equations (5)-(6). 
2 Step 2: Set m = arbitrary and m � 1; 

C I ( ' ' ) b (7) 
. h (Uij +uii) 3 omputevj= Vjl,···,VjM y wIt Uij= 2 . 

4 Sort N patterns on each of M features in ascending order. 
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5 Step 3: Find index k such that: Xkl :::; vii:::; X (k+l)1 with k = 
1, .. , Nand l = 1, .. , M. 
I> Update Uij : 

6 if i :::; k then do 
7 Uij = 'Y:.ij ' 
8 else 
9 Uij = 'iIij . 

I> Define VL or VR 
10 Step 4: Define VL or VR 
11 Compute vi' by (??). 
12 Compare Vjl with Vj'1 
13 if vii = Viii then do 
14 VR=Vj. 
15 else 
16 Set Vii = Viii' 
l7 Back to Step 3. 

I> In Case, to define v L: 
18 In step 3 we modify 
19 Update Ui;: 
20 if i :::; k then do 
21 Uij = 'iIij . 
22 else 
23 Uij = 'Y:.ij · 
24 and in Step 4 replace VR with VL. 

After obtaining vf, vf, type-reduction is applied to forming 
centroid of clusters as follows: 

Vi = (vf + vf)/2 (8) 

For membership grades: 

in which 

M 

uf = LUil/M,Uil = { 
1=1 

M 

uf = L Uil/M, Uil = { 
1=1 

Ui (Xk) 
:M.i (Xk) 

'iii (Xk) 
:M.i (Xk) 

(9) 

if Xil uses Ui (Xk) for vf 
otherwise 

(10) 

if Xil uses 'iIi (Xk) for vf 
otherwise 

(11) 
Next, defuzzification done for IT2FCM follows the rule if 

Ui (Xk) > Uj (Xk) for j = 1, . . .  , C and i i=- j then Xk is assigned 
to cluster i. 

III. INTUITIONIS TIC Fuzzy C-MEANS CLUS TERIN G 

As an enhancement of classical FCM, the intuitionistic 
Fuzzy C-means Clustering (lFCM) use the intuitionistic fuzzy 
sets with the aim to better handle the uncertainty. 

In order to incorporate intuitionistic fuzzy sets in conven­
tional fuzzy C-means clustering algorithm, we first redefine the 
membership function for IFCM. Several studies have proposed 
the membership function as in [19], [22] as follows: 

(12) 

where Uij is the membership function in FCM (Eg. (3)) and 

7rij is the hesitance degree of the lh data in ith cluster. 

However, Eg.12 seems ineffective. we take a simple ex­
ample as follows : Predefined a data x , a set A. To assess 
a membership function of x in set A based on intuitionistic 
fuzzy theory. Let u is the membership function, v is the non­
membership function and the hesitance degree 7r (u+v+7r=l) 

Case 1: 
Assuming that: u = 0.6 , v = 0.1 and 7r = 0.3 we have 

u* = 0.9 according to Eg.12 
Case 2: 
Assuming that: u = 0.8 , v=O.l and 7r = 0.1. we also have 

u* = 0.9 according to Eg.12 
One can easily realize that: case 2 is better than case 1. 

However, with the above Eg.12, the aggregate membership 
functions u* are 0.9 in both two cases and we can not 
determine the better one. 

Remark: The fact that hesitance degree 7r usually is not 
affect performance results. we are only interested in two factors 
that affect the decision are the membership function u and the 
non-membership function v. 

Therefore, we propose a new way to define the aggregate 
membership functions u* satisfying properties: the maximum 
membership function and the minimum non-membership func­
tion. 

(l3) 

where Uij is the membership function Eg. (3) and Vij is the 
the non-membership function of the jth data in ith cluster. 

Substituting Vij = 1 - Uij - 7rij in Eg. (l3), we have: 

* uij = Uij - Vij 
= Uij - (1 - Uij - 7rij) 
= 2Uij + 7rij 

(14) 

(15) 

(16) 

From Eg. (16), obviously see that -1 :::; uij :::; 1, we normalize 

u* so that 0 < u* < 1. 2J - tJ-
we have 

and 

U* + 1 0 < _2_J 
__ < 1 - 2 -

7rij O < u +- < l - 2J 2 -

We define the aggregate membership functions for intuition­
istic fuzzy sets: 

(17) 

Next, substituting Eg. (17) in FCM, the modified cluster center 
vi is calculated as: 

n 
L uijxj 

* :....j=....,.,..
l _

_ Vi = - n (18) 

L u* j=l tJ 

Thus, the objective function in FCM is modified when using 
IFSs: 

c n 

J1 = LLuird(xj,vj)2 
i=l j=l 

(19) 
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In order to build the intuitionistic fuzzy sets, we know 
that the choice of the membership functions is conditioned by 
the hesitance degree. In this approach, the hesitance degree is 
represented by means of intuitionistic fuzzy index (7r) referred 
in [25], [26]. We define the hesitance degree 7rj of the l h 
data with the clusters as follows: 

7rj = A (1 - Ulj, 1 - U2j, ... , 1 - Ucj) (20) 

where c is the number of clusters and Ulj, ... , Ucj is the 
membership functions of the lh data in the corresponding 
clusters. 

A second objective function is added, which is the intu­
itionistic fuzzy entropy (IFE) was above described (1): 

(21) 

From (19) and (21), the final objective function that contains 
two terms is minimized and is as follows: 

J = J1 + J2 (22) 

= ttu;rd(Xj,vj)2 +! t 7rj (23) 
n i=1 j=1 j=1 

Predefined parameters to the problem: the number of clus­
ters c(l < c < n) , fuzzifier m(l < m < +(0) and error c. 

This algorithm can be briefly described as follows: 

Algorithm 3 Intuitionistic Fuzzy c-means algorithm 
1 Step 1: Initialize centroid matrix 

, by choosing random from dataset X = {Xi , Xi E RM}, i = 

l..n and the membership matrix UO by using the Eq.16 and Eq.20 
2 Step 2: 
3 repeat: 
4 Update the centroid matrix by Eq.17 
5 Update the membership matrix U(j) by using Eq.16 and 

Eq.20 
6 Assign data Xj to cluster Ci if data (u; (Xj) > Uk (Xj)), k = 

1, .. , C and j =1= k. 
7 until: 

8 Step 3: Return U and Y. 

IV. INTUITlONISTlC TY PE-2 Fuzzy C-MEANS 

CLUS TERIN G 

A. Basic concepts 

We give some basic concepts which are used for threshold­
ing algorithm using InT2FSs for image segmentation problems. 
These basic concepts are extended by combining of type-2 
fuzzy sets and intuitionistic fuzzy sets. 

1) Intuitionistic type-2 fuzzy sets: A intuitionistic type-2 
fuzzy set in X is denoted A *, and its membership grade of x E 
X is M.4*(X,Ul) with Ul E J; � [0,1], its non-membership 
grade ofx E X is v.4*(X,U2) with U2 E f; � [0,1]. The 
elements of domain of (x, uI), (x, U2) are called primary mem­
bership and primary non-membership of x in A *, respectively, 
memberships of primary memberships M.4* (x, Ul) and non­
memberships of primary memberships v.4* (x, U2) are called 
secondary memberships and secondary non-memberships, re­
spectively, of x in A*, with Ul E J; � [0,1], U2 E f; � [0,1]' 
which are intuitionistic fuzzy sets. 

Type-2 intuitionistic fuzzy sets are called an Interval type-2 
intuitionistic fuzzy sets if the secondary membership function 
MJiJX,uI) = 1 and M�*(X,U2) = 1 VUl,U2 E Jx) i.e. an 
Interval type-2 intuitinistic fuzzy set are defined as follows: 

Definition 4.1: A type-2 intuitionistic fuzzy set (InT2FS), 
denoted A*, is characterized by two type-2 intuitionistic 
membership functions: M ;,(x, ud, M� (x, U2) and two type-2 

intuitionistic non-membership function v.4* (x, Ul), v�* (x, U2) 
where x E X and Ul E J; � [0,1]' U2 E f; � [0,1]' i.e., 

A* = {( (x, Ul), M.4* (x, Ul), v.4* (x, ud), ((x, U2), M'.4* (x, U2), 
v�*(x,u2))IVx E X, 

VUl E f�; � [0,1], VU2 E J; � [0, I]} 
in which 

o :s; M.4*(x,ud)'M�*(X,U2)),V.4*(x,ud),v�*(X,U2)) :s; 
1 

and o:s; v.4*(X,Ud) +M.4*(x,ud):S; 1, 0:S; v�*(x,ud) +  
M�* (x, Ul)) :s; 1 . 

Intuitionistic type-2 fuzzy sets are called an interval InT2Fs 
if the secondary membership function M A (x, Ul) = 1 and 

M�*(X,U2) = 1 VUl E J;,U2 E f; i.e. an interval type-2 
intuitinistic fuzzy set is defined as follows: 

Definition 4.2: An interval InT2FS A* is characterized by 
membership bounding functions 71.4* (x), M -*(x) and non­
membership bounding functions v.4* (x), :!L.4�(x) where x E X 
in which 

o :s; 71 A (x) + :!LA (x) :s; 1 
o :s; !!:.A (x) + v Ji (x) :s; 1 

(24) 

(25) 

Thus, an Interval type 2 intuitionistic fuzzy set can be de­
scribed through FOUs as follow: 

A = {x,71A(x)'!!:.Ji (x),vJi (x),:!LJi (x)IVx E X, (26) 

VflJi (X)'!!:.A (x), v A (x),:!LJi (x) E [0, I]} (27) 

B. 1ntuitionistic type-2 fuzzy C-means Clustering 

Note that: the developments of type-2 fuzzy sets and 
intuition fuzzy sets are applied to handle the uncertainty. 
However, their uncertainty processing is not the same. When 
the uncertainty treatment of type-2 fuzzy sets based on the 
uncertain selection of membership functions, the intuitionistic 
fuzzy sets handle uncertainty based on the identification of the 
membership function and the non-membership function with 
the hesitance assessment function. On the basis of the IFCM 
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and IT2FCM algorithms were presented above, we proposed 
a intuitionistic type-2 fuzzy c-means clustering algorithm 
(IT2IFCM) as follows: 

As described in the IFCM, We define the aggregate mem­
bership functions for intuitionistic interval type-2 fuzzy sets 
(InIT2FSs): 

(28) 

(29) 

Where 'iIij and 11.ij was calculated from Eq. (5) and 
( 6),respectively. 

Under the same conditions in IFCM, to build the InIT2FSs, 
we know that the choice of the interval membership functions 
[:i!:j' :U;j] is conditioned by the interval hesitance degree 
[1[j,7rj] of the jt h data with the clusters as follows: 

(30) 

(31) 

where c is the number of clusters and 
[:i!lj' :U1j], ... , [:i!�j' :U:j 1 is the membership functions of 

the jth data in the corresponding clusters. 
Because each pattern lh has membership interval as the 

upper :i!:j and the lower :i!:j' in the ith cluster. Each centroid 
of cluster Vi is represented by the interval between vf and vr. 
Cluster centroids are computed in the same way in the case of 
FCM: 

(32) 

. 
h

' 
h

' -
d 

-* u:+u� 
10 w IC Z = 1, c an uij = � 

Finding cluster centroid vf and vf follow the algorithm 2 
by replacing Eq. (5), Eq.(5) and Eq. (7) with Eq. (28), Eq. 
(29) and Eq. (32), respectively. 

After obtaining vf, vf, type-reduction is applied to forming 
centroid of clusters as follows: 

Vi = (vf + vf)/2 
For membership grades: 

(33) 

in which 

M 

uf = LUil/M,Uil = { 
1=1 

M 

uf = L Uil/M, Uil = { 
1=1 

if Xil uses :u; (Xj) for vf 
otherwise 

(35) 

if Xil uses :U;(Xj) for vf 
otherwise 

(36) 
Next, defuzzification for IT2IFCM is made as if Ui(Xj) > 
Uk(Xj) for k = 1, ... , c and i i- j then Xj is assigned to cluster 
i. 

V. EXPERIMENTS 

The experiments were completed for the well-known images 
with the predefined the number of clusters images in Table 
I. The results were measured on the basis of several validity 
indexes to assess the performance of the algorithms on the 
experimental images. 

TABLE I 
THE NUMBER OF CLUSTERS 

Image Number of cluster 
Rose 3 
Wolf 3 

Mountain 4 

We have done experiments on these test images with the 
FCM, IFCM, IT2FCM and IT2IFCM algorithms with prede­
fined parameters: the number of clusters c (1 < c < n) , fuzi­
fiers m = 2 for FCM and IFCM, fuzifier ml = 1.5, m2 = 5 

for IT2FCM and IT2IFCM, and error E = 0.00001. 
We performed the different validity indexes such as the 

Bezdeks partition coefficient (PC-I), the Dunns separation 
index (Dunn-I), the Davies-Bouldins index (DB-I), and the 
Separation index (S-I), Xie and Beni's index (XB-I), Classifi­
cation Entropy index (CE-I) [11]. The various validity indexes 
are shown in the Table II. 

Note that: the validity indexes are proposed to evaluate the 
quality of clustering. The better algorithm has smaller T-I, DB­
I, XB-I, S-I, CE-I and larger PC-I and the best results are 
marked bold. The results in Table II show that the IT2IFCM 
(the proposed algorithm) has a better performance or higher 
quality clustering than the other typical algorithm such as FCM 
and IT2FCM. 

V I. CONCLUSIONS 

This paper presented a fuzzy clustering algorithm based 
on intuitionistic fuzzy sets and intuitionistic type-2 fuzzy sets 
which improved the clustering results and overcome the draw­
backs of the conventional clustering algorithms in handling the 
uncertainty. The proposed approach have solved the problem 
of combining between IFSs and fuzzy clustering to improve 
the quality of clustering results, especially with noisy data.The 
experiments were completed for image segmentation with the 
statistics show that the proposed algorithm generates better 
results than other existing methods. 

The next goal is some researches related to use the gen­
eral type-2 intuitionistic fuzzy sets to better improvement of 
quality. 
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