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1 Introduction

A control system is given by a smooth family of vector fields parametrized by a control parameter

whose range is a closed smooth compact manifold of finite dimension or a disjoint union of

such manifolds (possibly, with different dimensions). A generic system or a system in general

position is a system in an open everywhere dense set in the space of systems equipped with the

(sufficiently) smooth Whitney topology.

For a control system the cone of a point in the phase space is the positive linear hull of the set

of admissible velocities of the system at this point and the steep domain is the set of all points

of the phase space such that their cones do not contain the zero vector. For a generic system,

in the closure of the steep domain, the boundary of the cone of a point consists of limiting

directions of velocities of the system at this point. Generic singularities of the field of limiting

directions and the attainable set on a smooth compact surface without boundary were studied

in [1]–[3]. Singularities of fields of limiting directions of generic smooth dynamical inequalities

on surfaces were studied in [4]. For surfaces with generic boundary singularities of the field of

limiting directions were studied in [5], and generic singularities of the positive orbit of the closed

starting set which lie in the interior of this orbit were investigated in [6].

In this paper, we classify singularities of attainable sets of generic systems on a smooth

compact orientable surface with boundary in the case where the starting set is a smoothly

embedded curve. The main results are formulated in Section 2 and are proved in Section 3.

2 The Main Results

2.1. Singularities of the field of directions on the boundary and the starting

set. By the boundary of a surface we mean a nondegenerate zero level set of some smooth

function G (i.e., everywhere on the boundary, G = 0 and dG �= 0). Without loss of generality

Translated from Problemy Matematicheskogo Analiza 75, April 2014, pp. 159–166.

1072-3374/14/1986-0835 c© 2014 Springer Science+Business Media New York

835



we assume that the system is defined in the domain where G � 0. We can reach this at each

connected component of the phase space by replacing the sign of G. The domain is referred to

as feasible.

We assume that the starting set (i.e., the set from which the system is allowed to start a

motion) is a smooth embedding of the circle S1 into the phase space, i.e., a smooth connected

compact curve. In the case of general position, this curve may intersects the boundary, but

without tangency.

On surfaces without boundary, singularities of the field of limiting directions of a generic

system are stable under small perturbations of this system (cf. [1, 3]). Therefore, in the case

of general position, singularities of the field of limiting directions not larger than 1, i.e., of

codimension 0 and 1, can be observed on the boundary and on the starting set. For generic

systems singular points of the field of limiting directions of codimension 0 are regular points,

where the branches of the field of limiting directions are smooth, whereas singularities of the

field of limiting directions of codimension 1 are passing points, ∂-passing points, and regular

zero-points.

Passing and ∂-passing points are observed even in the case of generic bidynamical systems:

at such a point, admissible velocity fields are collinear, but the differential of the angle between

them differs from zero and the fields themselves are not tangent to the collinearity line and have

either the same or opposite direction respectively. For systems with a large number of control

parameters such phenomena are observed on limiting directions of admissible velocity fields.

Regular zero-points appear if the dimension of a control parameter is greater than 0. At

such a point, the boundary of the convex hull of the set of admissible velocities contains the

zero velocity, is smooth in a neighborhood of this point, and has the first order tangency with

the limiting direction, whereas the limiting direction is transversal to the boundary of the steep

domain.

The following assertions are useful to study singularities of the attainable set on the boundary

of the surface and the starting set.

Proposition 2.1. For a generic control system on a smooth surface with boundary each

point on the boundary (the starting set) is related to one of the following five types:

(a) an interior point of the local transitivity zone,

(c) a passing point,

(d) a ∂-passing point,

(e) a regular zero-point.

Moreover, in each of the last three cases, at this point the boundary, the starting set, and the

boundary of the steep domain are transversal, whereas the limiting directions are not tangent to

the boundary (the starting set, the boundary of the steep domain).

Proposition 2.2. For a generic control system on a smooth surface with boundary the

branch of the field of limiting directions may touch the boundary (or the starting set) only at

its regular point with first order tangency, but not at its common point of the boundary and the

starting set (the boundary respectively).

We omit the proof of Propositions 2.1 and 2.2 since it immediately follows from the Thom

transversality theorem [7] and the results of [1].

A point z is called a point with first order (second order) tangency if this point lies in steep
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domain and a phase curve of some of the branches of the field of limiting directions touches at

this point the boundary (the starting set respectively) with first order tangency.

2.2. Structure of the boundary of the attainable set. We choose an orientation of

surfaces (phase spaces) and denote by L1 and L2 the fields of minimal and maximal limiting

directions respectively.

It is clear that for any starting set the boundary of the attainable set lies in the union of the

closure of the domain and the boundary of the surface. Consider a point z of this boundary and

denote by ηi(z) (η+i (z) and η−i (z) respectively) the limiting line passing trough the point z of

the branch Li of the field of limiting directions (outgoing from z and incoming to z respectively).

We denote by O+(S) and O−(S) (or O+ and O− if no misunderstanding arises) the positive and

negative orbits of a subset S of the phase space respectively.

A family of limiting lines of the branch of the field of limiting directions of a control system

is said to be structurally stable if the corresponding family of limiting lines of any sufficiently

close system is transformed to the original family by a homeomorphism of the phase space that

is close to the identity mapping.

We begin with the case where the starting set S does not intersect the boundary of the

surface. In this case, singularities of the boundary of the attainable set on the boundary of the

surface are studied in the same way as in [6]. Moreover, the set of singular lines (counterparts

of separatrices and cycles of usual vector fields; cf. [6]) should include limiting lines that are

(a) tangent to the starting set and

(b) outgoing from the points of intersection of the surface boundary and the starting set.

We will see that these new singular lines can lie on the boundary of the attainable set. The

following assertion holds.

Proposition 2.3. For a generic control system on a surface with boundary the set of singular

limiting lines is structurally stable.

This means that singular limiting lines of a generic system and any sufficiently close system

may be mapped into each other by a homeomorphism of the phase space that is close to the

identity mapping, i.e., for a generic system the set of these limiting lines is rough (cf. [8]–[10]).

We omit the proof of Proposition 2.3 since it is similar to that in [2].

The following two theorems describe the structure of the boundary of the attainable set at

points lying in the starting set, outside this set, and on its boundary.

Theorem 2.1. If the starting set S is a compact smoothly embedded curve on a compact

orientable surface M with boundary, then for a generic control system the germ of the boundary

of the attainable set O+ at every point z of S that does not lie on the boundary is one of the

following three germs:

(s1) (S, z),

(s2) (η−i (z) ∪ (S ∩ ∂O+), z), where z is not a point of second-type tangency.

(s3) (η+i (z) ∪ (S ∩ ∂O+), z), where η+i (z) is tangent to S with first order tangency.

This assertion is a counterpart of the corresponding result in [3].

Theorem 2.2. If the starting set S is a generic smoothly embedded compact curve on a

compact orientable surface M with boundary, then for a generic control system the germ of the
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boundary of the attainable set O+ at every point z of the intersection of the starting set with the

boundary is one of the following five germs:

(s4) (∂M, z),

(s5) ((S ∩ ∂O+) ∪ (∂M ∩O+), z),

(s6) (η+i (z) ∪ (∂M ∩O+), z),

(s7) (η+i (z) ∪ (S ∩ ∂O+), z),

(s8) (η+1 (z) ∪ η+2 (z), z),

where, at each singular point of type (s6), (s7), and (s8), the limiting line η+i (z) is not tangent

to the boundary of the surface, i = 1, 2.

Example 2.1. Suppose that a bidynamical system is given by the velocity fields (x+y,−x+

y) and (0,−1) in the strip |y| � 1 on the plane R2
x,y, the starting set S is the circle of radius 3/2

with center (1,−2), and the motion can be started only with its part lying in this strip. The

attainable set is presented by the shaded domain in Figure 1 (a), and the boundary point (1, 1)

is a point with first order tangency. The germ of this boundary O+ has type (s2) at the point,

where the limiting line outgoing from this point with tangency intersects the starting set, and

type (s5) at the point where the circle intersects the boundary in the domain x � 0. Points

between the singular points (s2) and (s5) have type (s1), whereas the point of intersection of

the starting set with the boundary in the domain x � 0 provides a singularity of type (s4).

(a) (b)

Figure 1. Singular points on the boundary of the starting set

Example 2.2. For a bidynamical system given by the velocity fields (0, 1) and (1, 0) in the

disk (x− 2)2+(y− 2)2 � 8 on the plane R
2
x,y the positive orbit O+ of the circle of radius 1 with

center (1, 1) is presented by the shaded domain in Figure 1 (b). The points (0, 1) and (1, 0) are

points with second order tangency, and, at these points, the germ of the boundary O+ has type

(s3). Points of the starting set lying between two singular points of type (s3) have type (s1).

The points A = (0, 4) and B = (4, 0) are also singular points (cf. [6]).

Remark 2.1. Theorems 2.1 and 2.2 generalize the results of [6] for systems on a compact

connected orientable surface with boundary to the case where the closed starting set does not

lie in the interior of its positive orbit.

2.3. Singularities of the attainable set. A point of the boundary of the attainable set

that lies on the starting set is called a singular point of type i = 0div 2 if the closure of this set
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in a neighborhood of this point coincides with the corresponding set y � g(x) (and also y � g(x)

for i = 1) with the value of the function g indicated in the second row of Table 1 under a suitable

choice of smooth local coordinates x, y with the origin at this point.

Table 1. Singularities of the boundary of the attainable set

i 0 1 2

g(x) 0 |x| x|x|

Theorem 2.3. If the starting set is a smoothly embedded compact curve on a compact

orientable surface with boundary, then for a generic control system the attainable set at each

point of its boundary on the starting set has one of singularities of type i = 0div 2. Moreover,

the germ of the orbit itself at this point has one of the corresponding singularities indicated in

the second column of Table 2, whereas the germ of its boundary has one of types indicated in the

third column of Table 2 respectively.

Table 2. Singularities of the attainable set

Type Singularity of O+ Type of point of ∂O+

0 y � 0 (s1) , (s4)

1 a) y � |x| (s5), (s6), (s7), (s8)

b) y � |x| (s2)

c) {y � −x, x � 0} ∪ {y < x, x � 0} (s2)

2 y � x|x| (s3)

Remark 2.2. All singularities indicated in Table 2 are realized by a system and the starting

set which are stable under small perturbations for any range of U , #U � 2. We note that the

complete list of generic singularities of the boundary of the attainable set on the surface with

boundary without taking into account the nature of their appearance is not larger than the

combined list of singularities presented in [6] and [3]. However, in the case of surfaces with

boundary, the nature of their appearance is much richer.

3 Singularities of Boundary of Attainable Set

In this section, we prove the main results of the paper. We first classify generic germs of the

boundary of the attainable set and then find the corresponding normal forms.

Proof of Theorem 2.1. Consider a point z in the intersection of the boundary of the

closure of the positive orbit O+ and the starting set. We first prove Theorem 2.1 for points in

the steep domain. By Proposition 2.1, in the steep domain, each point of the starting set is

either a regular point of each branch of the field of limiting direction or a passing point (one of

the branches if #U � 3 and both branches if #U = 2).

We consider only the case #U > 2 since the arguments are similar for #U = 2.

Let z be a regular point. We choose a smooth local system of coordinates with the origin

at z in such a way that the starting set goes to the x-axis and one of admissible velocities has

positive first component. In the case of general position, there are three essentially different

locations of the cone of this point (Figure 2 (a)–(c)).
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(a) (b) (c)

Figure 2. The cone of a regular point on the starting set in the steep domain

It is easy to see that the point z lies inside O+ in case (c). This fact contradicts the condition

z ∈ ∂O+. Therefore, case (c) is impossible.

In case (a), three situations are possible. In the first one, each limiting line incoming to

the point z does not lie in the closure of the attainable set. Then the germ of the boundary of

the attainable set at this point has type (s1) (Figure 3 (a)). In the second situation, only one

limiting line incoming to z lies in the closure and, in this case, the germ of this boundary at this

point has type (s2) (Figure 3 (b)). Finally, in the third situation, both limiting lines incoming

to z lie in the closure of the attainable set. But, in this case, the point z lies inside O+, which

contradicts the assumption that the point belongs to the boundary of the attainable set. Hence

case (a) is impossible.

(a) (b) (c)

Figure 3. A point of the boundary of the starting set

In case (b), for a generic system z is a point with second order tangency. By Proposition 2.3,

the limiting line incoming to this point without tangency with the starting set does not lie on the

boundary of O+. Two situations are possible: in a neighborhood of z, the limiting line touching

the starting set lies in the half-plane y � 0 or in the half-plane y � 0. In the first situation, the

germ has type (s3) at this point (Figure 3 (c)), whereas, in the second one, the point z lies in

the interior of the attainable set which means that case (b) is impossible.

Further, if a point z belongs to the boundary of the steep domain, then, in the case of general

position, it is either a ∂-passing point or a regular zero-point. However, in both cases, the point

lies in the local transitivity zone (cf. [1]). Therefore, it cannot lie on the boundary of the orbit

O+ and, consequently, both situations are impossible.

Finally, if z is an interior point of the local transitivity zone, then, as above, it lies in the

interior of the orbit O+ and, consequently, this case is impossible. Theorem 2.1 is proved.

Proof of Theorem 2.2. Let z lie in the intersection of the starting set and the boundary.

By the Thom transversality theorem, In the case of general position, the starting set does not

intersect the boundary of the surface at points of codimension 1 on the boundary, i.e., at points

with first order tangency and at passing (∂-passing) points or regular zero-points. Therefore, z

is not related to the above-listed types.
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In the case of general position, the starting set and the boundary of the surface transversally

intersect at z. We choose local coordinates with the origin at z in such a way that the boundary

of the surface becomes the x-axis, the starting set goes to the y-axis, and the feasible domain

goes to the half-plane y � 0.

If a point z belongs to the local transitivity zone, then the germ of the boundary of O+ at

this point has type (s4) (Figure 5 (a)). Otherwise, it is a regular point of each branch of the

filed of limiting directions since, by Proposition 2.3 and the transversality theorem, the singular

litiming lines of a generic system are not incoming to this point.

(a) (b) (c) (d) (e)

Figure 4. A point of the orbit boundary on the boundary of the surface

There are five essentially different cases of the location of the cone of this point relative to

the tangents to the starting set and the boundary ∂M at this point (Figure 4 (a)–(e) (we note

that in the case of general position, these tangents are not limiting directions).

In the first case, the cone of the point z “is directed towards” the interior of the complement

to the feasible domain. The following two typical cases are possible: the direction vector (0,−1)

lies or not in the interior of the cone. In the second case, the cone lies in the third or fourth

quadrant and the germ of the boundary O+ at this point has type (s5) (Figure 5 (b)). In the

first case, it has type (s4) (Figure 5 (a)).

(a) (b) (c)

Figure 5. A point of the orbit boundary on the boundary of the starting set

In cases (b) and (c), the first limiting direction “is directed towards” the fourth quadrant,

whereas the others “are directed towards” the first and third quadrant respectively. By Propo-

sition 2.2, the limiting directions tangent neither the boundary of the surface nor the starting

set. It is clear that if the second limiting direction lies in the first quadrant, then the germ of the

boundary of O+ at this point has type (s5). If the second limiting direction lies in the second

quadrant, then the germ of the boundary of O+ at this point has type (s6) (Figure 5 (c)).
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(a) (b)

Figure 6. A point of the orbit boundary on the boundary of the starting set

In case (d), the cone at z “is directed towards” the first quadrant. In this case, the germ of

the boundary of O+ at the point z has type (s7) (Figure 6 (a)).

Finally, in case (e), the cone at a point z “is directed towards” the feasible domain; moreover,

one limiting direction “is directed towards” the first quadrant, whereas the other “is directed

towards” the second quadrant. It is clear that the germ of the boundary O+ at this point has

type (s8) (Figure 6 (b)). Theorem 2.2 is proved.

Proof of Theorem 2.3. For a generic system the germ of the boundary of O+ at each point

z of the starting set and on the intersection of the boundary of the surface and the starting set

has one of the types indicated in Theorems 2.1 and 2.2. We consider these cases.

(a) (b)

Figure 7. A singular point of type 0 and 2

If, at a point z, the germ of the boundary of O+ has type (s1) or (s4), then the germ of

(∂O+, z) is C∞-diffeomorphic to the germ at the zero set of type 0 as indicated in Table 1 since

the boundary of the surface and the starting set are smooth. Consequently, in this case, the

germ of the orbit O+ at this point also has singularity of type 0 as indicated in Table 2 (Figure 7

(a)).

By the smoothness of the boundary of the surface and the starting set, as well as by the

transversality, at a point of type (s5), the germ (∂O+, z) is C∞-diffeomorphic to the germ of a

set of type 1 indicated in Table 1 at zero, whereas the germ of the orbit O+ at this point has

singularity of type 1a) indicated in Table 2. At points of type (s6), (s7), (s8), the germ (∂O+, z)

is C∞-diffeomorphic to the germ of a set of type 1 in Table 1 at zero since the limiting lines

passing through this point are transversal and each of these limiting lines is transversal to the

boundary of the surface. The germ of the orbit O+ at these points has singularity of type 1a)

as indicated in Table 2 (Figure 8 (a)).
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(a) (b) (c)

Figure 8. A singular point of type 1

As above, at a point of type (s2), the germ (∂O+, z) is C∞-diffeomorphic to the germ of a

set of type 1 in Table 1 at zero and the germ of the orbit O+ at this point has singularity of

type 1b) in Table 2. In particular, if the limiting line incoming to this point does not lie on the

boundary of O+, then the germ of the orbit O+ has singularity of type 1c) in Table 2 (Figure 8

(b)–(c) respectively).

Finally, if z is a singular point of type (s3), then the germ (∂O+, z) is C∞-diffeomorphic to

the germ of a set of type 2 as indicated in Table 1 at zero since the limiting line outgoing from

this point is tangent to the starting set with first order tangency, whereas this set is smooth. It

is obvious that the germ of the orbit O+ at this point also has singularity of type 2 as indicated

in Table 2 (Figure 7 (b)). Theorem 2.3 is proved.

Example 3.1. For the above bidynamical systems on the plane R2
x,y with the same starting

set the attainable set is presented by the shaded domain in Figure 1 (a)–(b). On the boundary

of the attainable set, one can see singularities of types 0, 1, and 2.
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