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Structural Information and Dynamical
Complexity of Networks

Angsheng Li and Yicheng Pan

Abstract— In 1953, Shannon proposed the question of quantifi-
cation of structural information to analyze communication
systems. The question has become one of the longest great
challenges in information science and computer science. Here,
we propose the first metric for structural information. Given
a graph G, we define the K -dimensional structural information
of G (or structure entropy of G), denoted by HK (G), to be
the minimum overall number of bits required to determine
the K -dimensional code of the node that is accessible from
random walk in G. The K -dimensional structural information
provides the principle for completely detecting the natural or
true structure, which consists of the rules, regulations, and orders
of the graphs, for fully distinguishing the order from disorder
in structured noisy data, and for analyzing communication
systems, solving the Shannon’s problem and opening up new
directions. The K -dimensional structural information is also the
first metric of dynamical complexity of networks, measuring
the complexity of interactions, communications, operations, and
even evolution of networks. The metric satisfies a number of
fundamental properties, including additivity, locality, robustness,
local and incremental computability, and so on. We establish the
fundamental theorems of the one- and two-dimensional structural
information of networks, including both lower and upper bounds
of the metrics of classic data structures, general graphs, the
networks of models, and the networks of natural evolution.
We propose algorithms to approximate the K -dimensional struc-
tural information of graphs by finding the K -dimensional
structure of the graphs that minimizes the K -dimensional
structure entropy. We find that the K -dimensional structure
entropy minimization is the principle for detecting the natural
or true structures in real-world networks. Consequently, our
structural information provides the foundation for knowledge
discovering from noisy data. We establish a black hole principle
by using the two-dimensional structure information of graphs.
We propose the natural rank of locally listing algorithms by the
structure entropy minimization principle, providing the basis for
a next-generation search engine.

Index Terms— Shannon entropy, structural information,
dynamical complexity of networks, graph characterisation,
networks.
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I. INTRODUCTION

SHANNON defined the information of a distribution
p = (p1, p2, · · · , pn) to be the entropy as

H (p1, . . . , pn) = −
n∑

i=1

pi log2 pi .

This metric has been the foundation for our understanding
of “information” in the current state of the art in all areas of
sciences.

Shannon [48] proposed the question to establish
a structural theory of information to support the analysis
of communication systems. Brooks, Jr., [13] listed the
question of quantification of structural information, that is,
the Shannon’s 1953 question, as the first of the three great
challenges for half-century-old computer science.

In the 21st century, data of new types, such as biological
data, web data, topographical maps and medical data etc
have appeared. Analysing the new data and discovering the
orders and knowledge of the new data are new challenges
in the current computer science. For this new mission,
Shannon’s definition of information is apparently insufficient,
for which a new metric of structural information is urgently
called for.

Equally important, a metric of structural information is
central for us to understand the complexity of networks,
including the networking computing systems, and to develop
the network theory. The reason is that, structural entropy may
well define the dynamical complexity of networks, that is, the
measure of the complexity of interactions, communications,
operations and even evolution of the networks. For this
challenge, there is no even a nontrivial progress in the current
state of the art.

Complex networks were assumed to be randomly
evolved in the early history of network study, for which
Erdös and Rényi [22], [23] proposed a classic model, referred
to as the ER model. This model was used to explore many
properties of random graphs such as the existence of giant
connected components, the small diameter property etc. Much
more recently, Watta and Strogatz [51] proposed a simple
model in which random edges are added to a grid graph
(or the like), and Kleinberg [25] introduced a model in
which edges are added with endpoints chosen with probability
inversely proportional to a power of the distances in the grid.
The graphs generated by these models have small diameters
and also witness clustering effects, whereby two nodes are
more likely to be adjacent if they share common neighbors.
Barabási and Albert [5] proposed the scale-free model by
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introducing preferential attachment as an explicit mechanism,
which generates graphs with a power law degree distribution.
Following this, a number of new models were introduced by
using randomness and some local rules, including the copying
model [28], [29], the forest fire model [30], the random walk
model and nearest neighbor model [50], the random-surfer
model [8] and the hierarchical model [45]. These models
provide theoretical approaches to studying notions of statistical
robustness. The current state of the art, however, continues to
indicate that real networks are complex in ways not captured
by existing models. This brings the fundamental question
of characterizing the complexity of complex networks into
sharper focus.

Newman and Girvan [42] defined the notion of modularity
to measure the quality of community structure in a network.
Mowshowitz [40] defined the entropy of a graph G as the
entropy of a probability distribution associated with the
orbits of the automorphism group of G. This definition is
concerned with the symmetries of graphs, which have been
used for characterising molecules and chemical structures.
Bonchev and Trinajstić [10] introduced a notion of entropy
determined by distances, i.e. they considered the entropy of
the distributions on the number of nodes accessible within
certain distances. A Markov entropy centrality of a Markov
chain associated with a system, was also proposed [41].
For degrees, there is a naive way to define an entropy of
the degree distribution. Dehmer [19] proposed the notion
of information functional, allowing some more theoretical
analyses. These measures of graph entropy, together with
more but similar measures are reviewed in a recent survey by
Dehmer and Mowshowitz [21]. All these existing measures
of graph entropy can be principally categorised as two
approaches, one is the global approach and the other the local
approach. The global approach is to measure the entropy
of the distribution p(G), where p(G) is the probability that
G occurs in a random construction of graphs. The local
approach is to measure the entropy of a distribution p(i)
where p(i) is the probability that node i of a graph G occurs,
in which p(i) is associated with a selected function f from
the vertices to real numbers.

Rosvall and Bergstrom [47] proposed an algorithm to find
communities of a network by minimising the description
length of nodes of the network.

Bianconi [6] introduced a notion of entropy for network
ensembles, which was called the “structural entropy of
network ensembles” and is now known as the Gibbs entropy of
network ensembles. The Gibbs entropy of a network ensemble
is the number of bits required to determine the code of the
network constructed by the ensemble. Anand and Bianconi [2]
proposed the notion of Shannon entropy of network ensembles,
which corresponds to the number of bits needed to determine
the description of a classical system generated by the
ensemble. Braustein et al. [11] proposed the notion of
von Neumann entropy of a network. The von Neumann
entropy of a network ensemble is interpreted as the number
of bits needed to determine the description of the quantum
system generated by the ensemble. The Gibbs entropy,
Shannon entropy and von Neumann entropy are defined by

a statistical mechanics approach, providing an approach to
comparing the different models of networks.

In the present paper, we define the high-dimensional
structure entropy of a graph to be the minimum overall
number of bits required to determine the high-dimensional
code of the node that is accessible from random walk in the
graph. Intuitively, for a graph G and a natural number K ,
the K -dimensional structural information of G is the measure
that controls the formation of the K -dimensional structure
T of G satisfying: (i) T consists of the rules, regulations
and order of G, and (ii) T excludes the perturbation of
random variations occurred in G. Consequently, the metric of
the high-dimensional structural information is a measure
of structural information that perfectly supports: (1) analysis
of structured and noisy data, (2) analysis of networking
systems, (3) constructions of structures for unstructured big
data, (4) extracting natural or true structures from corrupted
structures, and (5) discovery of knowledge from noisy data,
including both structured and unstructured. Our metric also
measures the complexity of the interactions, communications,
and operations in networks, and even the evolution of the
networks, referred to as a dynamical complexity of networks.
We find that our K -dimensional structural information
of graphs satisfies a number of fundamental properties.
We establish the theory of one- and two-dimensional structure
entropy of arbitrarily given graphs, of classical structures in
nature, and of networks generated by well-known models.
We show that our K -dimensional structure entropy provides
the principle to distinct the order from disorder in a noisy
structure, and to detect the natural or true knowledge from
noisy data. We propose the natural rank algorithms by the
principle of two-dimensional structure entropy minimisation,
providing the basis for a next-generation search engine.

We organize the paper as follows. In Section II,
we review the static complexity of network ensembles.
In Section III, we introduce the challenges. In Section IV,
we introduce the overall ideas of our structural information.
In Section V, we introduce our notion of K -dimensional
structural information for graphs. In Section VI, we define
the natural K -dimensional structures of networks by using
our K -dimensional structural information. In Section VII,
we establish some basic properties of the K -dimensional
structural information of graphs. In Section VIII, we define
the notion of K -dimensional structural complexity of net-
works. In Section IX, we establish the lower bound of
positioning entropy of typical graphs i.e., the graphs of
either simple or with balanced weights. In Section X,
we establish the general principles of two-dimensional
structural information of graphs. In Section XI, we establish
the lower bounds of two-dimensional structural information
of classical data structures and the networks of the small
world model. In Section XII, we establish the upper
bounds of two-dimensional structural information for classical
data structures and for networks of the small world
model. In Section XIII, we establish the lower bounds of
two-dimensional structural information for expander graphs,
and for the networks of classical models. In Section XIV,
we propose the homophyly/kinship model and establish
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the theory of two-dimensional structural information of
the networks generated by the homophyly/kinship model.
In Section XV, we establish a black hole principle of
networks. In Section XVI, we introduce the algorithm for
finding the natural K -dimensional structure of networks and
the personalised listing rank algorithm for smart searching
by using the K -dimensional structure entropy minimisation
principle of networks. In Section XVII, we introduced the
three-dimensional gene map developed by Li et al. [36]
to show that structure entropy minimisation is indeed
the principle for discovering true structures in Nature.
In Section XVIII, we propose a new search engine, the natural
rank, on the basis of structure entropy minimisation. Finally
in Section XIX, we summarize the conclusions of our paper
and discuss some open questions left by this research.

II. EXISTING MEASURES OF GRAPH ENTROPY

For graphs and models of graphs, many measures of group
entropy have been proposed. We review the representative such
measures.

We will see that each of the measures is a specific form of
the Shannon entropy for different types of distributions.

A. Global Measures

Rashevsky [44] proposed the first entropy measure of the
following form: For a connected graph G with n nodes,

I(G) = −
k∑

i=1

ni

n
· log2

ni

n
(1)

where ni is the number of topologically equivalent vertices in
the i -th vertex orbit of G, and k is the number of different
orbits.

In this definition, vertices are considered as topologically
equivalent if they belong to the same orbit of a graph.

Similar notion can be defined by using edges and edge
equivalent classes.

Bonchev and Trinajstić [10] defined the entropy measure for
a graph G based on the distribution of metric d(i, j) where
i, j are vertices of i and j .

The different choices of d(i, j) lead to a number of entropy
measures of graphs by using the same idea.

B. Local Entropy Measures

Raychaudhury et al. [46] proposed the first local measure
of graph entropy. Such a measure is interpreted as a kind of
vertex complexity [46].

A similar such notion is as follows. Given a connected
graph G with n nodes, for each pair of nodes i and j , let
d(i, j) be the distance between i and j in G, and let d(i) be
the sum of d(i, j) for all j .

For each i , we define the entropy of i in G by

IG(i) = −
n∑

j=1

d(i, j)

d(i)
· log2

d(i, j)

d(i)
. (2)

Local measures of the j -sphere cardinalities and
the parametric information measures have also been
defined [20], [26].

C. Parametric Graph Entropy

Dehmer [19] defined an interesting parametric measure as
follows. Given a network G = (V , E) and a function f from V
to positive real numbers, define

p(i) = f (i)
n∑

j=1
f ( j)

.

Then the parametric measure is the Shannon entropy of the
distribution (p(1), p(2), · · · , p(n)).

D. Gibbs Entropy

The Gibbs entropy per node in a network of n nodes,
denoted �, was defined for network ensembles following
a statistical mechanics approach. A microcanonical network
ensemble is defined as the set of all the networks satisfying
a set of constraints. Examples of typical constraints include
having a fixed number of links per node, having a given degree
distribution or community structure. The Gibbs entropy of
a microcanonical ensemble is given by

� = 1

n
· log N, (3)

where N is the number of the networks in the ensemble.
By definition, the Gibbs entropy of a network ensemble is

the number of bits needed to determine the code of the network
generated by the ensemble.

E. Shannon Entropy

For a network of n nodes, for each pair of nodes (i, j),
create a link of weight α with probability πi, j (α). Then, the
probability � of the canonical undirected network ensemble,
defined by its adjacency matrix {ai, j }, is defined by

� = �i< j πi, j (ai, j ), (4)

for which the log-likelihood function is given by

L = −
∑

i< j

log πi, j (ai, j ). (5)

The entropy of a canonical ensemble is the logarithm of the
number of typical networks in the ensemble and is given by

S = 〈L〉� = −
∑

i< j

∑

α

πi, j (α) log πi, j (α), (6)

which takes exactly the form of a Shannon entropy. This
defines the notion of Shannon entropy of a network ensemble.

In particular, for the case of a simple undirected network,
where α = 0 or 1, we have

S = −
∑

i< j

pi, j log pi, j −
∑

i< j

(1− pi, j ) log(1− pi, j ), (7)

where pi, j = πi, j (1) is the probability of having a link
between nodes i and j .

By definition, the Shannon entropy of a network ensemble
is the number of bits needed to determine the expression of
the network generated by the ensemble.
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Bianconi et al. [7] introduced an indicator function,
denoted �, on the basis of Shannon entropy to quantitatively
measure the dependence of the structures of a network to the
semantic characteristics of the nodes of the network.

F. Von Neumann Entropy

Braustein et al. [11] proposed the notion of von Neumann
entropy of a network. The entropy is constructed from
a density matrix ρ associated with the network. The
density matrix must be a positive semidefinite matrix with
unitary trance. The matrix ρ is defined as ρ = L/

∑
i, j

ai. j ,

where L is the Laplacian matrix of the network,
with Li, j = ∑

r
air δi, j − ai, j . Given ρ as above, we

define the von Neumann entropy of an ensemble as

SV N = −〈Trρ log ρ〉�. (8)

The von Neumann entropy is therefore defined by the
spectra of the Laplacian of the network.

Anand and Bianconi [2] showed that the Gibbs entropy is
equal to the Shannon entropy in the thermodynamic limit for
random graphs, and that for scale-free networks, the Shannon
entropy and the von Neumann entropy are linearly related.
Anand et al. [3] showed that the Shannon entropy and the von
Neumann entropy are correlated for heterogeneous networks.

In statistical mechanics, for configurations drawn from
canonical ensembles, the Shannon entropy corresponds to the
entropy of classical systems, while the von Neumann entropy
provides the statistical description of quantum systems.
Therefore, the Shannon entropy and the von Neumann entropy
are the numbers of bits needed to determine the description
of the classical system and the quantum system generated by
the ensembles, respectively. According to this understanding,
we can intuitively interpret the Shannon entropy and von
Neumann entropy of a network ensemble as the descriptive
complexity of the networks generated by the ensemble.

G. Structural Entropy of Models of Networks

Choi and Szpankowski [15] defined a structural entropy for
a model of networks. Given a random graph model M, let S be
the set of all graphs of the same type generated by model M.
For graphs G, H ∈ S, we have that G and H have the same
structure, if they are isomorphic. For a graph G ∈ S, the
probability of G, denoted by p(G), is the sum of p(H ) for
all the graphs H that are in S and are isomorphic to G. Then
the structural entropy HS of S is the Shannon entropy of the
distribution p(G) for all G ∈ S, that is,

HS = −
∑

G∈S
p(G) log p(G)). (9)

III. THE CHALLENGES

A. Quantification of Structural Information

Brooks, Jr., [13] proposed the question of quantification of
structural information as one of the three great challenges
for half-century-old computer science: “We have no theory,
however, that gives us a metric for the information embedded

in structure, especially in physical structures · · · I consider
this missing metric to be the most fundamental gap in
the theoretical understandings of information science and
of computer science.” The question was early observed
by Rashevsky [44] and by Trucco [49]. In fact, the
same problem was implicitly stated by Shannon himself in
his 1953 paper [48].

To better understand the great challenge left by Shannon,
we examine the following example.

Suppose that we are given a structured data G = (V , E)
which is a graph. We want to analyse G. According to
Shannon’s information, we can get the Shannon information
of G only by the following approach:

(1) (De-structuring) To define a distribution p of G, such as
the distribution of degrees, or distances of G.

(2) (Shannon’s information) To compute the Shannon
information of p, i.e., I = H (p).

(3) (Information of G) We obtain the information I of G.

Step (1) gives an unstructured vector p by removing the
structure of G. This step may lose the most interesting
properties of G. Step (3) gives us the Shannon information I
of G, which is just a number. The question is: what properties
of G can we find from the Shannon information I of G?

Therefore, Shannon information gives us only a number for
every graph G. However, we can not analyse the properties of
graph G from the Shannon number I .

The problem above is fundamental, because, graphs are
perhaps the most general and most intuitive mathematical
structures for computer science. However, Shannon’s
information does not help much for us to analyse the
graphs, i.e., structured data.

By the same reason, none of the existing measures in
Section II supports the analysis of structured data, because,
all the measures are a specific form of the Shannon entropy.

The situation above becomes worse when we analyse the
large-scaled networking data, and unstructured big data.

To solve the problem left by Shannon, we need a new metric
of structural information that supports the analysis of graphs,
networks, structured data and even unstructured big data. Here
we provide such a metric.

Before introducing our metric, we describe the general
problem we will solve as follows:

Given a graph G, suppose that

(i) G is a structured, but noisy data,
(ii) G is obtained from evolution,

(iii) there are rules controlling the evolution of G, and
(iv) there are random variations occurred in the evolution

of G.

Our questions for analysis of G include:

(1) How to measure the amount of randomness in the
evolution of G?

(2) How to extract exactly the part of G constructed by
rules, excluding the random variations?

(3) Can we distinct the part of G generated by rules and the
part of G perturbed by random variations?

It is conceivable that the general problem is fundamental to
many areas of both information science and computer science.
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As we will see, our metric of high-dimensional structural
information provides the principle for us to perfectly solve the
problem, in general.

B. Dynamical Complexity of Networks

Networks are complex. However, what are the complexity
measures of networks?

Naturally evolving networks are hard even to describe, to
define or to store. This concerns the static complexity of
networks. We notice that all the existing notions of various
entropies of graphs and models of graphs can be regarded as
static measures of complexity of networks.

However, millions of interactions, communications and
operations may occur in every second of time in a real
world network, and the real world networks are dynamically
evolving. The complexity of a network is largely the dynamical
complexity of the network to quantitatively measure the
complexity of the interactions, communications, operations
and evolution of the networks. Therefore, the great challenge
is to measure the complexity of interactions, communications,
operations and evolution of the real world networks, referred
to as dynamical complexity of networks.

Real world networks are either naturally evolving in nature
and society, or else are engineered. In a given real world
network, individuals interact and communicate frequently and
simultaneously. The complexity of such a dynamical network
is largely a quantitative measure of the non-determinism of
the interactions and communications in the network.

Real world networks have roughly two categories. The first
category consists of those networks that are evolved by natural
rules in nature and society such as citation networks, social
networks and protein-to-protein interaction networks. The
second category consists of those networks which are created
in engineering such as computer networks, communication
networks, and service networks.

For a network naturally evolving in nature and society, self-
organisation is the basic form of social organisation in the
network, leading to natural social groups of the network.
Networks constructed in industry involve both self-organis-
ation behaviours and engineering requirements. In either case,
a real world network must have a natural structure such as
the natural community structure and the natural hierarchical
structure of the network. This natural structure, either
the natural community structure or the natural hierarchical
structure of the network, must play the central role in
the dynamics of the network. Therefore, identification of
the natural structure of a network is central to network
dynamics. Before resolving this issue, we have to solve some
fundamental problems.

To establish our theory, we have to resolve the following
challenges: What is the dynamical complexity of networks?

In the present paper, we will establish the measures of
structural information and dynamical complexity of networks,
resolving the challenges.

IV. OVERALL IDEAS

As the availability of large-scaled, noisy, folded, corrupted
and structured data, the challenge we are facing is: Given a

Fig. 1. Decoding the truth by structural information.

noisy or corrupted graph G, to define the information H of G
such that H determines the essential structure T and true
knowledge K of G. We assume that the true knowledge K
of G consists of the rules, regulations and laws of G,
that the true knowledge K of G is placed in the essential
structure T of G, that the essential structure T of G is
obtained from G by excluding the maximum amount of
nondeterminism, uncertainty, and noises that occurred in G,
and that the essential structure T of G is determined by the
structural information H of G. Such a metric, once defined,
allows us to decode the truth from noisy data, and supports
analysis for networking systems.

Here, we propose such metrics, and establish the
fundamental theory of the metrics. First of all, we introduce
the overall ideas of our concepts. The overall ideas of our
theory is summarised in Figure 1. According to Figure 1, our
theory provides the following approach to decoding the truth
from physical systems or noisy data by the following steps:
Given an object,

(1) Suppose that there are unknown laws of the object.
(2) (Hierarchical Thesis) Suppose that there is a natural

structure of the object generated by the laws of the
object, and that the natural structure is a hierarchical
structure T .
The idea of the hierarchical thesis is to encode the
graph by a high-dimensional encoding system and to
measure the information required to position the vertices
in the graph by using this high-dimensional encoding
system. Given a network G = (V , E), if G is evolved
in nature, society or industry, then G has a natural
hierarchical structure T such that for every vertex
v ∈ V , v is encoded by a k-tuple (i1, i2, · · · , ik) that
determines the vertex v, for some k. For example,
a person in a society is affiliated to “province”, “city”,



LI AND PAN: STRUCTURAL INFORMATION AND DYNAMICAL COMPLEXITY OF NETWORKS 3295

Fig. 2. Decoding error correcting code.

“institution” and “department”, and so the codes of
the “province”, “city”, “institution” and “department”
uniquely determine the person. In this example, if the
natural hierarchical structure T of G is given, then the
knowledge of G can be easily extracted from T , and
furthermore, using T , the dynamical complexity of G is
the information required to determine the k-dimensional
code (i1, i2, · · · , ik) of the vertex v that is accessible
from random walk in G.
The hierarchical thesis may hold in many systems
in Nature and Society, although it is not easy to
mathematically proven.

(3) (Physical or noisy graph) Suppose that the known data
of the object form a physical system or noisy graph G
generated by the laws of the object perturbed by noises.

(4) (Decoding by structural information) Our structural
information determines and decodes the natural
hierarchical structure T of G, referred to the knowledge
tree of G.

(5) (Knowledge discovery) The laws of the object can be
found from the knowledge tree T of G by knowledge
discovering.

The framework of our theory is similar to decoding an
error correcting code (ECC), depicted in Figure 2. According
to Figure 2, in information transportation, we usually encode
a string x by an ECC E to a string E(x) such that even if the
receiver gets a corrupted string y, from which we are able to
decode the string x of the sender. This is the procedure of our
framework in Figure 1.

Finally, we notice that the principle of decoding the error
correcting code is the algebraic robustness of the codewords,
and the principle of decoding the truth from data is to minimise
the uncertainty by the structural information.

V. GRAPH STRUCTURAL INFORMATION

A. One-Dimensional Structural Information

A real world network is a highly connected graph which
is dynamically evolving, and in which individuals frequently
interact with their neighbors. We use random walks to capture
the interactions of nodes in a network, giving a notion

of entropy which reflects the dynamical complexity of the
network. This is the one-dimensional structural information
of the network.

Before defining our notion, we recall the Shannon entropy
for a distribution.

For a probability vector p = (p1, . . . , pn), with∑n
i=1 pi = 1, the entropy function of p is defined by

H (p1, . . . , pn) = −
n∑

i=1

pi log2 pi .

Intuitively speaking, in the definition of H (p1, p2, · · · , pn),
for every i , l = − log pi is the length of binary representation
of number 1

pi
. This means that 1

pi
is one of the 2l many

numbers. For this reason, we interpret − log pi as the
“self-information of pi ”. This also means that − log pi is
the amount of information needed to determine the code
of i . Therefore −∑n

i=1 pi log2 pi is the average amount of
information needed to determine the code of i chosen with
probability distribution p = (p1, p2, · · · , pn).

1) Definitions: Given a graph G = (V , E) with n nodes
and m edges, we define the one-dimensional structural
information of G or positioning entropy of G by using the
stationary distribution of the degrees of G and the Shannon
entropy function H .

Definition 1 (One-Dimensional Structural Information of
Connected and Undirected Graphs): Let G = (V , E) be an
undirected and connected graph with n nodes and m edges.
For each node i ∈ {1, 2, · · · , n}, let di be the degree of i
in G, and let pi = di

2m . Then the stationary distribution of
random walk in G is described by probability vector p =
(p1, p2, · · · , pn). We define the one-dimensional structural
information of G or the positioning entropy of G as follows:

H1(G) = H (p) = H

(
d1

2m
, . . . ,

dn

2m

)

= −
n∑

i=1

di

2m
· log2

di

2m
. (10)

The one-dimensional structural information in Definition 1
is a special case of the parametric entropy in Subsection II-C.
The differences are: 1) our one-dimensional structural
information allows natural extensions to weighted and directed
graphs, and 2) the parametric entropy is determined by
arbitrarily given function f .

The one-dimensional structural information H1(G) of
a connected graph G measures the information required to
determine the one-dimensional code of the node that is
accessible from random walk in G with stationary distribution.
By this understanding, it is also referred to as positioning
entropy of G.

The definition of one-dimensional structural information
or positioning entropy allows natural extension to weighted
graphs (networks).

Definition 2 (Weighted Degree and Volume): Given a
network G = (V , E), suppose that the weights assigned to
edges is defined by a weight function w : E → R

+. Define
the weighted degree of node u to be du =∑v∈N(u) w((u, v)),
where N(u) is the set of neighbors of u. We say that a weighted
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graph has k-bounded weight if for every edge e, w(e) ≤
k. For a subset U ⊆ V , define the volume of U to be
vol(U) = ∑v∈U dv . Define vol(G) = ∑v∈V dv to be the
volume of G.

For each node u ∈ V , let pu = du
vol(G) . We consider

the random walk in which at each step, the probability of
choosing a neighbor v ∈ N(u) of the current node u is
proportional to the weight of (u, v). It is easy to verify that the
stationary distribution of this random walk in G is described
by probability vector p = (p1, p2, · · · , pn), where pi is the
probability of visiting the i -th node.

The positioning entropy of weighted graph G is defined
similarly to that in Equation (10).

Definition 3 (One-Dimensional Structural Information of
Weighted and Connected Networks): Let G = (V , E) be
a connected and weighted graph with n nodes, m edges
and weight function w. We define the one-dimensional
structural information of G or positioning entropy of G as
follows:

H1(G) = H (p) = H

(
d1

vol(G)
, . . . ,

dn

vol(G)

)

= −
n∑

i=1

di

vol(G)
log2

di

vol(G)
. (11)

Definition 4 (One-Dimensional Structural Information of
Directed and Connected Graph): Given a connected and
directed graph G = (V , E), let n = |V | be the number
of nodes and m be the number of directed edges in G.
For a node v ∈ V , we use d in

v and dout
v to denote the

in- and out-degree of v in G respectively. We define the
one-dimensional structural information of G or the positioning
entropy of G as follows:

H1(G) := −
∑

v∈V

d in
v

m
log2

d in
v

m
. (12)

Finally, we define the one-dimensional structural
information of a disconnected graph.

Definition 5 (One-Dimensional Structural Information
of Disconnected Graphs): Given an undirected graph
G = (V , E),

(1) If E = ∅, then define H1(G) = 0.
(2) Otherwise. Then Suppose that G1, G2, · · · , GL are the

induced subgraphs of all the connected components
of G. Then we define the positioning entropy of G is
the weighted average of the positioning entropies of Gi

for all i ’s. That is,

H1(G) = 1

Vol(G)

L∑

j=1

Vol(G j ) ·H1(G j ), (13)

where Vol(G) is the volume of G, Vol(G j ) is the volume
of G j .

In Definition 5, we have that: (1) is reasonable for which
the reason is that there is no random walk which occurs in G,
and (2) is reasonable since it simply follows the additivity of
the Shannon entropy function.

2) Negative Weights: According to Definitions 1, 3 and 4,
if there is a node i of a connected and weighted graph G such
that the total weight of i is wi < 0, then the definition of
the one-dimensional structural information is no longer valid,
since log wi

W is undefined, where W > 0 is the total weight
of the graph. In this case, we have to reduce the graph G to
a new graph H such that for every node i , the total weight
of i in H is greater than 0. Certainly, there are natural ways to
reduce the graph G. For example, we keep all the nodes and
edges of G for H , and for each edge e in G, we define the
weight of e in H is ew or 2w, where w = w(e) is the weight
of e in G.

B. Two-Dimensional Structural Information

1) Structural Information of Graphs Given by a Partition:
Let G = (V , E) be a connected network. Suppose that P =
{X1, X2, · · · , X L} is a partition of V , in which each X j is
called a module or a community.

By using the partition P , we encode a node v ∈ V by
a pair of codes (i, j) such that j is the code of the community
containing v, and i is the code of the node within its own
community.

Considering the random walk with stationary distribution
again, we need to define the structural information of G given
by P .

Definition 6 (Structural Information of a Network by
a Partition): Given an undirected and connected graph G =
(V , E), suppose that P = {X1, X2, · · · , X L } is a partition
of V . We define the structural information of G by P as
follows:

HP (G) =
L∑

j=1

Vj

2m
· H
(

d( j )
1

Vj
, . . . ,

d( j )
n j

V j

)
−

L∑

j=1

g j

2m
log2

Vj

2m

= −
L∑

j=1

Vj

2m

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j
−

L∑

j=1

g j

2m
log2

Vj

2m
,

(14)

where L is the number of modules in partition P , n j is the
number of nodes in module X j , d( j )

i is the degree of the
i -th node of X j , Vj is the volume of module X j which is
the sum of degrees of nodes in X j , and g j is the number of
edges with exactly one endpoint in module X j .

The intuition of HP (G) is as follows. Given a network G
and a partition P of vertices of G, we encode every node v
in G by a pair of codes ( j, i) such that the code of the
module X containing v is j , and the code of v in its own
module X is i . The first term of HP (G) is the number of
bits needed to determine the code of the node, v say, in its
own module X , where v is the node accessible from a step
of random walk in G, and the second term of HP (G) is the
number of bits needed to determine the code of a module,
X say, in the network, where X is the module accessible from
a step of random walk from nodes outside of X . Notice that,
for a random walk in G, the arrival node must be in a module
of the partition P , so the first term of HP (G) is always
non-empty. However, the second term of HP (G) is nonzero
only if the random walk enters a new module, otherwise,
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we have already known the code of the module. This means
that if a random walk is within the same module, then the code
of the module is already known, so the corresponding second
term is zero, in which case, we only need to determine the
code of the accessible node in its known module. Therefore,
HP (G) is the number of bits needed to determine the code
( j, i) of the node accessible from a step of random walk in G,
by using the partition P .

Based on this understanding, we can interpret HP (G)
as a 2-dimensional structural information, and E1(G) as
a 1-dimensional structural information of network.

The two-dimensional structural information of weighted
graphs are defined similarly to that in Equations (14) - (19).
Precisely, we have:

Definition 7 (Structural Information of Weighted Networks
by a Partition): Let G = (V , E) be a weighted graph
with n nodes, m edges and weight function w. Suppose that
P = {X1, X2, · · · , X L} is a partition of V . We define the
structural information of G by P as

HP (G) =
L∑

j=1

Vj

vol(G)
· H
(

d( j )
1

Vj
, . . . ,

d( j )
n j

V j

)

−
L∑

j=1

g j

vol(G)
log2

Vj

vol(G)

= −
L∑

j=1

Vj

vol(G)

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j

−
L∑

j=1

g j

vol(G)
log2

Vj

vol(G)
, (15)

where L is the number of modules in partition P , n j is the
number of nodes in module X j , d( j )

i is the degree of the
i -th node of X j , Vj is the volume of module X j , and g j is
the sum of the weights of the edges with exactly one endpoint
in module X j .

Our definitions of positioning entropy and structural
information can be extended to directed graphs.

Given a directed graph G = (V , E), let n = |V | be the
number of nodes and m be the number of directed edges in G.
For a node v ∈ V , we use d in

v and dout
v to denote the in- and

out-degree of v in G respectively.
For a subset of nodes S ⊆ V , we define the volume of S

to be the total in-degrees of nodes in S, that is, vol(S) =∑
v∈S d in

v .
In this case, the volume of G is just the number of edges m.
Definition 8 (Two-Dimensional Structural Information of

Directed Graphs): Given a directed and connected graph
G = (V , E) and a partition P = {V1, . . . , VL} of G, we
define the two-dimensional structural information of G by P
as follows:

HP (G) := −
L∑

j=1

vol(Vj )

m

∑

v∈Vj

d in
v

vol(Vj )
log2

d in
v

vol(Vj )

−
∑

v∈Vj

g j

m
log2

vol(Vj )

m
, (16)

where g j is the number of edges going to nodes in Vj from
nodes outside of Vj .

For weighted directed graphs, the definitions are similar.
Let G = (V , E) be a directed graph with weight function
w : E → R

+. Define the weighted in-degree of a node v to
be the sum of the weights of edges whose head endpoints are
all v, that is, d in

v =
∑

u:(u,v)∈E w((u, v)), where (u, v) is the
directed edge from u to v. The volume of a subset S is defined
to be the sum of weighted degrees of nodes in it. Then the
positioning entropy and structural information of a weighted
network can be defined similarly.

2) Two-Dimensional Structural Information of Graphs:
Definition 9 (Two-Dimensional Structural Information of

Connected Networks): Let G = (V , E) be connected graph.
We define the two-dimensional structural information of G
(also referred to such as the module entropy or as the local
positioning entropy, of G) as follows:

H2(G) = min
P
{HP (G)}, (17)

where P runs over all the partitions of G.
In the definition of two-dimensional structural information

above, we require that the given graph G is connected.
However, this condition is not necessary. In fact, there are
many ways to extend the definitions to disconnected graphs.
In our theory, we define the notion by additivity, following the
law of Shannon entropy function.

Definition 10 (Two-Dimensional Structural Information
of Disconnected Graphs): Given a graph G, suppose
that G1, G2, · · · , GL are the induced subgraphs of all
the connected components of G. Then we define the
two-dimensional structural information of G to be the
weighted average of the two-dimensional structure entropies
of all the subgraphs Gi ’s. That is,

H2(G) = 1

Vol(G)
·

L∑

j=1

Vol(G j ) ·H2(G j ), (18)

where Vol(G), for each j , Vol(G j ) is the volume of G j .
To make sure that Definition 10 is well-defined, we notice

that it is possible that there is a j such that G j contains a single
isolated node. In this case, the two-dimensional structural
information of G j is lim p→ 0−p log2 p = 0. So, for any
graph G, if there is no edge among the nodes of G, then
E(G) = 0.

3) Normalised Two-Dimensional Structural Information of
Networks: We may also define a normalized version of the
two-dimensional structural information.

Definition 11 (Normalized Two-Dimensional Structural
Information of Networks): For any graph G = (V , E), we
define the normalized two-dimensional structural information
of G as follows:

τ (G) = H2(G)

H1(G)
. (19)

C. High-Dimensional Structural Information

Real world networks generally have a hierarchical structure
such that a module of a network may consist of a number
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of submodules, which leads to a natural extension of the
two-dimensional structural information to high-dimensional
cases.

To define high-dimensional structural information,
we introduce a partitioning tree of graphs. First, we consider
the two-dimensional case. For a graph G = (V , E), and
a partition P = {X1, X2, · · · , X L} of V , we interpret the
partition P by a partitioning tree T of hight 2 as follows:
1) first, we introduce the root node λ, and define a set of
nodes Tλ = V , 2) we introduce L immediate successors for
the root node denoted αi = λˆ〈i〉, where i = 1, 2, · · · , L,
and associate the set Xi with node αi ; thus, we define
Tαi = Xi , and 3) for each αi , we introduce |Xi | immediate
successors denoted αi ˆ〈 j〉 for all j ∈ {1, 2, · · · , |Xi |}, and
each successor αi ˆ〈 j〉 is associated with an element in Xi ;
thus, we define Tαi ˆ〈 j 〉 as the singleton of a node in Tαi = Xi .

Therefore, T is a tree of height 2, and all of the leaves
of T are associated with singletons. For every node α ∈ T ,
Tα is the union of Tβ for all of β values (of the immediate
successors) of α, and the union of Tα for all of the nodes α
values at the same level of the tree T is a partition of V .

Thus, the partitioning tree of a graph G = (V , E) is a set
of nodes such that each node is associated with a nonempty
subset of vertices of graph G, and can be defined as follows:

Definition 12: (Partitioning Tree of Graphs): Let G =
(V , E) be an undirected and connected network. We define
the partitioning tree T of G as a tree T with the following
properties:

(1) For the root node denoted λ, we define the set Tλ = V .
(2) For every node α ∈ T , the immediate successors of α

are αˆ〈 j〉 for j from 1 to a natural number N ordered
from left to right as j increases.
Therefore, αˆ〈i〉 is to the left of αˆ〈 j〉 written as
αˆ〈i〉 <L αˆ〈 j〉, if and only if i < j .

(3) For every α ∈ T , there is a subset Tα ⊂ V that is
associated with α.
For α and β, we use α ⊂ β to denote that α is an
initial segment of β. For every node α 
= λ, we use α−
to denote the longest initial segment of α, or the longest
β such that β ⊂ α.

(4) For every i , {Tα | h(α) = i} is a partition of V , where
h(α) is the height of α (note that the height of the
root node λ is 0, and for every node α 
= λ, h(α) =
h(α−)+ 1).

(5) For every α, Tα is the union of Tβ for all β’s such that
β− = α; thus, Tα = ∪β−=αTβ .

(6) For every leaf node α of T , Tα is a singleton; thus,
Tα contains a single node of V .

We define the entropy of G by a partitioning tree T of G.
Definition 13: (Structural Information of a Graph by

a Partitioning Tree): For an undirected and connected network
G = (V , E), suppose that T is a partitioning tree of G.
We define the structural information of G by T as follows:

(1) For every α ∈ T , if α 
= λ, then define

HT (G; α) = − gα

2m
log2

Vα

Vα−
, (20)

where gα is the number of edges from nodes in Tα to
nodes outside Tα , Vβ is the volume of set Tβ , namely,
the sum of the degrees of all the nodes in Tβ .
(Remark: For an edge-weighted graph G = (V , E), gα

is the sum of the weights of all the edges between Tα and
nodes outside Tα , and the degree of a node v ∈ V in G
is the sum of the edge weights of all the edges incident
to v. For a non-weighted graph, we regard the weight
of an edge as 1.)

(2) We define the structural information of G by the
partitioning tree T as follows:

HT (G) =
∑

α∈T ,α 
=λ

HT (G; α). (21)

For a weighted or directed graph G = (V , E), if G is
connected, and T is a partitioning tree of G, then the
structural information of G given by T is defined similarly
to Definition 13 by the same way as that for the one- and
two-dimensional cases.

Definition 14 (K -Dimensional Structural Information):
Let G = (V , E) be a connected network. We define
the K -dimensional structural information of G as follows:

HK (G) = min
T
{HT (G)}, (22)

where T ranges over all of the partitioning trees of G of
height K .

For a disconnected graph G, the K -dimensional structural
information of G is defined similarly to Definition 10 as
follows:

HK (G) = 1

Vol(G)
·

L∑

j=1

Vol(G j ) ·HK (G j ), (23)

where Vol(G), for each j , Vol(G j ) is the volume G j , and
G1, G2, · · · , GL are all the connected components of G.

Our definition of the structural information defines the law
of self-organisation of individuals in nature and society by
implying the following self-organisation principle: minimising
the non-determinism of a structure is the principle for
the self-organisation of structures within naturally evolving
networks.

In particular, the K -dimensional structural information of
a graph G implies that minimisation of non-determinism is the
principle of the self-organisation of a K -dimensional structure
of a graph for K > 1. For K = 1, the K -dimensional structural
information of a graph G is the positioning entropy of G.

D. Structural Information

Our K -dimensional structural information supports the
analysis of graphs, networks, structured data and even
unstructured data. To understand this, we introduce the
following:

Definition 15 (Structural Information): Given a graph G,
a natural number K , a height K partitioning tree T of G
and a positive number δ ≤ 1:

(1) We define the K -dimensional structure information of G
by

IK (G) = HK (G). (24)
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(2) We say that T is a knowledge tree of G, if:

HT (G) = HK (G). (25)

(3) We say that T is a δ-knowledge tree of G, if:

HT (G) ≤ 1

δ
·HK (G). (26)

According to the Definition 15, for a given graph G, we
compute the K -dimensional structural information HK (G)
of G, and simultaneously find a height K knowledge tree T ,
satisfying the following principle:

1) The K -dimensional structural information HK (G) of G
is achieved or approximated by the K -dimensional
structure T of G.

2) The K -dimensional structural information HK (G)
provides the controlling principle for the formation of
the K -dimensional knowledge tree T by minimising the
uncertainty or non-determinism of the K -dimensional
structures of G.
Therefore, T , a knowledge tree of G, consisting of
the rules, regulations, and orders of G, is found by
minimising the random variations of the K -dimensional
structures of the graphs, where the random variations
are determined by our K -dimensional structural
information.

Our K -dimensional structural information of graphs is
completely different from the Shannon entropy.

According to the principles 1) and 2) above, our
K -dimensional structural information of graphs is essentially
the metric that allows us to fully or maximally detect
the K -dimensional structure consisting of the rules, regula-
tions, and orders of the graphs against the random variations
occurring in the graphs. Our definition of the K -dimensional
structural information perfects supports us to fully extract the
order from un-ordered graphs, and to distinguish the order
from disorder in a structured data. Our definition does not lose
any property of the graphs. Our definition perfectly supports
full analysis of networking data, and unstructured big data.

E. Dynamical Complexity of Networks

According to the definitions, the K -dimensional structural
information of a graph G is exactly the measure of uncertainty
of the K -dimensional structures of G. Hence we have:

Definition 16 (Dynamical Complexity of a Network):
Given a network G and a natural number K , we define
the K -dimensional dynamical complexity of G by

CK (G) = HK (G). (27)

Definition 16 defines the dynamical complexity of G,
that is, the K -dimensional complexity of interactions,
communications, operations and evolution in G.

VI. CHARACTERISATION OF NATURAL

STRUCTURES OF NETWORKS

A. One-Dimensional Natural Structure

According to Definitions 1, 3, 4 and 5, for a graph G, it is
easy to compute the one-dimensional structural information
of G. However, what we can do with unstructured big data?

Networking is the current approach to processing the big
data that are usually unstructured in the real world. The
question is what is the principle to process the unstructured
data in the real world.

Consider the following scenarios:
Case 1: Suppose that v1, v2, · · · , vn are n objects such that

for each pair (vi , v j ), there is a weight w(i, j) between the
two objects vi and v j . Among the weights w(i, j)’s, there is
only a small number of the weights that are non-trivial and
meaningful, and many of the weights are probably just noise
or trivial.

In this case, we are asked to construct a weighted graph G
of nodes the objects v1, v2, · · · , vn such that the weighted
edges of G are exactly the edges between the objects with the
non-trivial (i.e., large) weights. That is, in the construction
of G, we must remove the noisy or trivial (or small) weights
and maintain the nontrivial weights between the pairs of the
objects. The desired graph G allows a systemical, unbiased,
and connecting approach to analysing the natural structure of
the objects v1, v2, · · · , vn .

Our one-dimensional structural information suggests
a principle for constructing the desired graph G as follows:

(1) G is highly connected.
(2) The one-dimensional structural information of G is

minimised.
(1) ensures that the connections of the unstructured objects

v1, v2, · · · , vn are well-defined, and (2) ensures that the
non-determinism of networking of the unstructured objects
v1, v2, · · · , vn is minimised.

Case 2: Suppose that G is a graph, and v is a new node such
that for each node u, there is some weight w(v, u) between v
and u, among which many of the weights w(v, u) are trivial or
simply noisy. However, we actually don’t know which weights
are non-trivial, and which are trivial or noisy.

In this case, we are asked to create the links from v to nodes
in G such that all the important weights are maintained, and
all the trivial or noisy weights are removed.

To solve this problem, the one-dimensional structural
information provides a principle. It is actually the same
principle as that in Case 1 above.

Therefore, the significance of the one-dimensional structural
information is that it provides a principle for networking
of unstructured big data. This points to a new direction of
networking engineering.

B. Two-Dimensional Natural Structure

According to Darwin’s evolution theory, animals form
social groups for survival in the evolution of species.
Similarly, in a network that is naturally evolving in nature
and society, individuals form natural communities. The
natural communities of a network are largely the results of
self-organisation behaviours. The self-organisation of indivi-
duals in a network includes many factors, such as, maximisa-
tion of individual interests, competitions among individuals,
maximisation of group interests, social organisation and
randomness etc. To understand, let us consider the following
examples.
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(1) A graduate seeks for a job
When a graduate seeks for a job, he/she may
know several candidate institutions, from which he/she
eventually decides to join based on the negotiations and
a few rounds of interviews with each of the candidate
institutions. In this procedure, the graduate certainly
wants to maximise his/her own interests, minimise
his/her cost, the institutions want to maximise their
own interests, and every stage of the procedure, there
is always something by chance, i.e., the factor of
randomness.

(2) A person joins a club
Someone joins a certain club, because, he/she may
realise his/her own interests through the club. In this
case, the motivation of the person is to realise his/her
own interests, instead of the club interests.

(3) A person attends a meeting or a seminar
In this case, person knows something about the meeting
and seminar, from which, the person would expect
something for his/her own interests.

The examples above show that natural communities do form
in real world networks, and that the natural communities
have many factors. In our definition of the two-dimensional
structural information of a graph, we use the non-determinism
of random walks in the graph as a measure to unify
the various factors of the self-organisation behaviours and
social organisations. According to the definition of the
two-dimensional structural information, we have the following
principles:

(1) Minimisation of the two-dimensional structural
information is equivalent to the minimisation of
non-determinism of community structures of the
network.

(2) Two-dimensional structural information minimisation of
a network is the principle for both the self-organisation
of individuals in the network and the formation of
natural communities of the network.

We better understand both (1) and (2) above as follows.
By definition, given a connected graph G and a vertex
partition P of G, the structural information of G by P is the
overall amount of information to position the two-dimensional
code of the node that is accessible from random walk
in G with stationary distribution. By the definition of
the two-dimensional structural information, H2(G) is the
minimum of HP (G) over all partitions P of G. This means
that H2(G) captures the partition P of G that achieves the
minimum information of the two-dimensional structure of G.
By definition, structural information is the measure of the
non-determinism of the structure of the graph. Therefore,
the two-dimensional structural information may very well
characterise the principle of the natural structure in the real
world networks and the principle of the self-organisation
of the individuals in the real world. This principle also
implies that in the organisation of social relations, people fear
uncertainty or non-determinism and usually follow the choices
that minimising uncertainty or non-determinism.

For K = 2 and for a network G, we say that a partition
P of G forms the natural community structure of G, if the

two-dimensional structural information of G given by P
is approximately the two-dimensional structural information
of G, that is, H2(G) ≈ HP (G).

Finally, we notice that, the two-dimensional structural
information of networks provides a novel measure for the
quality of community identification algorithms of networks,
and for K > 2, the K -dimensional structural information
provides the ideas for exploring the high-dimensional natural
structures of networks. Li et al. [32] have shown that a simple
greedy algorithm based on the two-dimensional structural
information precisely identifies the natural communities of
networks by models and precisely identifies the ground-truth
communities in real world social networks.

For community detection, Newman and Girvan [42] had
proposed the modularity maximisation principle. By the
definition of modularity, this principle is to maximise the
function of the modules of a network. It captures the role
of social organisation in a network. Because, the principle
characterises the partition P of a network G such that each
module in P plays a maximum role as a functional module.

As mentioned above, social organisation is only one factor
for the formation of natural communities. Therefore, the
modularity maximisation principle fails to characterise the
natural communities of networks. This is in deed the case,
as shown in Li et al. [32].

C. High-Dimensional Natural Structure

A real world network G may have a natural structure
in which a natural module contains several submodules.
Our K -dimensional structural information of a network
characterises the hierarchical structure through a partitioning
tree T such that the non-determinism of the positioning by
a K -dimensional coding system is minimised.

Given a network G, we say that a height K partitioning
tree T is the K -dimensional natural structure of G,
if the K -dimensional structural information of G given by
T is approximately the K -dimensional structural information
of G, that is, HK (G) ≈ HT (G).

Therefore, the K -dimensional structural information of
networks characterises the K -dimensional coding natural
structure of the networks. This discovering has been verified
by Li et al. [36].

The results established for the principle for high-
dimensional natural structures of networks. We remark that for
high-dimensional structures of networks, our K -dimensional
structural information is the first such principle.

Remark: 1) For each K ≥ 2, our K -dimensional
structural information characterises the natural K -dimensional
structure of networks. Our interest is to identify the natural
structures of networks, instead of the algorithmic structures
of the networks, which are simply the outputs of certain
algorithms. 2) Our definition of the one-dimensional structural
information of establishes the principle for us to construct
the natural network G for an unstructured data, U say.
3) For K ≥ 2, our K -dimensional structural information of
a network G establishes the principle for us to identify the
natural K -dimensional structure of the network G.
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Li et al. [36] have proposed the method of three-dimensional
gene map for cancer cell types and subtypes based on
the K -dimensional structural information of networks for
k = 1, 2 and 3.

The experiments in [31], [32], and [36] have shown that
for both K = 2 and 3, K -dimensional structural information
minimisation is in deed the currently best strategy to detect
the natural structure, that is, the ground-truth structures of real
world networks.

D. Natural Structures of Networks

This progress leads to the following:
Definition 17 (Natural Structure of Networks): Given

a network G, a natural number K > 1, a positive constant
δ ≤ 1, and a partitioning tree T of G with height K , we say
that T is a K -dimensional δ-natural structure of G, if:

HT (G) ≤ 1

δ
·HK (G) (28)

Definition 17 provides an approach to theoretically
analysing the high-dimensional natural structures of networks
(that is, the high-dimensional ground-truth structures of
networks).

VII. BASIC THEOREMS

In this section, we prove some basic properties of
the K -dimensional structural information of graphs.

Theorem 18 (Locality Theorem): Given a connected
graph G, let P be the partition of nodes of G such that each
module X of P contains a single node of V , and let Q be
the partition of G containing only one module of the whole
set V . Then, we have

HP (G) = HQ(G). (29)

Proof: By the definition of the structural information of G
given by a partition. �

Theorem 18 ensures that if we start with the trivial
partition P in which each module is a singleton, and merge the
modules towards minimising the two-dimensional structural
information of the graph, it is impossible to get the trivial
partition with the single module of the whole set of nodes.
Therefore, by minimising the structural information, none of
the modules can grow up as the whole network. The same
result can be established for the K -dimensional structural
information of graphs for any K > 2.

Theorem 18 indicates that the simple idea of greedily
merging the modules has already been a well-defined strategy
for computing the two-dimensional structural information of
a network.

Remark: Modularity maximisation fails to satisfy this
property. It has been shown that it is possible (even always)
to obtain the trivial partition consisting of the unique
module of the whole set of nodes by merging modules
towards maximising modularity from the trivial partition
in which each module is a singleton. This is the reason
why there is always an outside condition governing the
algorithms of modularity maximisation. Our experiments

in [31], [32], and [36] also showed that in most cases, the
algorithms of modularity maximisation fail to detect natural
communities (or ground-truth communities) of real world
networks.

Theorem 19 (Separation Theorem): Let G = (V , E) ne
a connected graph. Suppose that P is a partition of V , and
X and Y are two modules of P . If there is no edge between
the nodes in X and the nodes in Y . Let Z = X ∪ Y . Let Q
be the partition consisting Z and all the modules of P other
than X and Y . Then, we have:

HP (G) < HQ(G). (30)

Proof: By the definition of the two-dimensional structural
information of graphs given by a partition, a proof is referred
to Li et al. [32]. �

Theorem 19 ensures that the two-dimensional structural
information minimisation forbids to merge two disconnected
modules into one module.

Clearly, Theorem 19 can be extended to K -dimensional
structural information of graphs for K > 2. Therefore,
structural information minimisation ensures that disconnected
parts of a network must be in distinct modules of the network.

VIII. FUNDAMENTAL PROPERTIES OF STRUCTURAL

INFORMATION AND DYNAMICAL

COMPLEXITY OF NETWORKS

Network dynamics studies the laws of dynamical movement
in a network. Among the various kinds of actions, interactions
and communications in a network, positioning is the most
fundamental operation. Given a network G, the K -dimensional
structural information of G is the minimum overall number of
bits needed to determine the K -dimensional code of the node
that is accessible from a step of random walk by the stationary
distribution in the network G.

By Definitions 15 and 16, for a network G and a natural
number K ,
• The K -dimensional structural information of G is

IK (G) = HK (G).

• The K -dimensional dynamical complexity of G is

CK (G) = HK (G).

Therefore, the K -dimensional structural information
provides both the quantification of structural information and
dynamical complexity of networks simultaneously.

The fundamental properties of the K -dimensional structural
information explore simultaneously the principles of structural
information and dynamical complexity of networks.

Before establishing our theory of structural information and
dynamical complexity of networks, we outline some of the
basic properties of the K -dimensional structural information
of networks.

Let G be a graph and K be a natural number. By definition,
HK (G) satisfy the following properties:

(1) Network dependency
HK (G) is a function of the sizes of G that is uniquely
determined by the network G.
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This property fails to hold for the existing measures of
complexity of networks, because:
(i) For the modularity of a graph G, it is a number in
the interval [0, 1] which is independent of the sizes of
the graph G.
(ii) For the existing entropy measures of graphs,
including the Gibbs entropy, Shannon entropy and the
von Neumann entropy, the the measures are determined
by an ensemble which may generate the given graph,
instead of the given graph itself.

(2) Additivity
HK (G) follows an additivity law due to the additivity
of the entropy function H .
This property fails to be satisfied by any of the
existing entropy measures of graphs, including the
Gibbs, Shannon and von Neumann entropies. However,
additivity is essential to the theory of structural
information and dynamical complexity of networks.

(3) Locality
This has been established in Theorem 18.

(4) Dynamics
As analysed before, HK (G) is the quantitative measure
of the K -dimensional structural information and the
complexity of the dynamical actions in the network
by using a K -dimensional coding system. Therefore,
HK (G) characterises both the structural information and
the dynamics of network G.
This property fails to be satisfied by the existing
entropy measures, including the Gibbs, Shannon and
von Neumann entropies, because the later measures
characterise the complexity for determining the code or
the description of the graph from a network ensemble,
which is completely irrelevant to the dynamics of
the given network. As a matter of fact, each of the
existing measures, including the Gibbs, Shannon and
von Neumann entropies defines the measured quantity
of a given network that is largely determined by an
ensemble outside the given network.

(5) Essentiality
The notion of HK (G) measures both the K -dimensional
structural information and the complexity of K -dimensi-
onal positioning of G. Due to the fact that positioning is
the primitive operation of various actions in a network,
the notion HK (G) should be fundamental to network
dynamics.

(6) Robustness
According to the definition of HK (G), if the graph G
evolves to a graph G′ such that the total number of
changes in nodes and edges is small, then

HK (G) ≈ HK (G′). (31)

Therefore, the K -dimensional structural information and
the dynamical complexity of networks are robust for any
changes of small-scales.
In particular, we conjecture that for a classical model M
and for a given type of the model, the K -dimensional
structural information of the networks of the model with
the given type is robust to the variations of the model.

(7) Linking nature to science
HK may capture the laws of nature that can be
applied to the new information sciences by the following
principles:
(i) Structural information (K -dimensional) minimisation
is the principle of nature evolving; and
(ii) Structural information minimisation is the principle
for networking and for network information processing.

(8) Local computability
Theorem 19 ensures that structural information
minimisation considers the actions of an individual
or a module to the objects that link to the given
individual or module. This property guarantees the local
computability of the structural information of networks.

(9) Incremental computability
The additivity and separability in Theorem 19 ensure
that in the evolution of networks, the corresponding
structural information of the networks can be computed
by an incremental approach in the sense that at any stage,
we compute only the small number of modifications of
the networks.

(10) Applicability
We have seen that HK provides the principle
for identifying the natural K -dimensional structure
of networks, and defines the dynamical complexity
of K -dimensional structures of networks. Due to the
essentiality and primitivity of the measure, it is easy
to think of other applications of the theory, including
such as, in network controls, network security, security
robustness, and game theory in networks etc. To the
authors, it is conceivable that the applications of the
theory maybe more than what we can image at this
stage due to the fact that the theory maybe developed
and extended to other disciplines including mathematics,
information theory, computer science, machine learning,
network, physics, biological and medical sciences.

IX. ONE-DIMENSIONAL STRUCTURAL

INFORMATION OF GRAPHS

In this section, we establish both the lower and upper bounds
of graphs. The graphs considered in this section are undirected,
connected, and either simple or with balanced weights to be
defined later. We prove the result by dividing into two cases,
one for simple graphs, and the other for graphs with balanced
weights.

Recall that we also call the one-dimensional structure
entropy as positioning entropy. For convenience, we use both
the two names.

A. Simple Graphs

A graph is called simple, if there is no self-loop or
multi-edge in the graph. For simple graphs, we have:

Theorem 20 (Lower Bound of Positioning Entropy of Simple
Graphs): Let G = (V , E) be an undirected, connected, and
simple graph with m edges, i.e., |E | = m. Then:

H1(G) ≥ 1

2

(
log2 m − 1

)
.
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Proof: Let |V | = n. For every node v ∈ V , let dv be
the degree of v in G. Consider the random walk in G with
stationary distribution p = (p1, . . . , pn), where pi = di

2m .
By definition, H1(G) is the Shannon entropy of distribution p.
It is well-known that H1(G) is a lower bound on the
lengths of encoding schemes of the nodes of G by using
alphabet {0, 1}.

Suppose that we have already had an encoding {C(u) ∈
{0, 1}∗ : u ∈ V } for all the nodes in V . By assumption, C(u)
is a binary representation of length |C(u)| = �− log2

du
2m �.

Moreover, suppose that C(·) is prefix-free. By Kraft-McMillan
Theorem, there exists such an encode C(·). Furthermore,
the Huffman code is the shortest such a prefix code. For
this encoding, the average length of codewords is at most
H1(G)+ 1, which almost touches the lower bound.

For encoding for the edges in E , we consider an undirected
edge (u, v) to be two directed ones u → v and v → u.
We encode every u → v with the codeword C(u) ◦ C(v), in
which ◦ represents concatenation. The prefix-freeness of C(·)
guarantees that the codeword of an edge defined by this way
is unique.

In the random walk, denoted by P , under the stationary
distribution p, every directed edge has equal probability to
be crossed over. So the entropy of the distribution on edges
is log2 2m. We use the codewords of edges to represent the
random walk. That is, at each step, we use the codeword of the
edge being crossed over to represent this step. Thus a lower
bound of the expected length of codeword for each step is
the entropy of the uniform distribution on edges, i.e., log2 2m.
Moreover, by the definition of the random walk, this expected
length can be calculated as follows. Let N(u) be the set of
neighbors of node u, we have that

E(u,v)∈P[|C(u) ◦ C(v)|]

=
∑

u∈V

⎡

⎣ du

2m

⎛

⎝
⌈
− log2

du

2m

⌉
+ 1

du

∑

v∈N(u)

⌈
− log2

dv

2m

⌉⎞

⎠

⎤

⎦

=
∑

u∈V

du

2m

⌈
− log2

du

2m

⌉
+
∑

u∈V

∑

v∈N(u)

1

2m

⌈
− log2

dv

2m

⌉

=
∑

u∈V

du

2m

⌈
− log2

du

2m

⌉
+
∑

v∈V

∑

u∈N(v)

1

2m

⌈
− log2

dv

2m

⌉

=
∑

u∈V

du

2m

⌈
− log2

du

2m

⌉
+
∑

v∈V

dv

2m

⌈
− log2

dv

2m

⌉

≤ 2(H1(G)+ 1).

Recall that E(u,v)∈P[|C(u) ◦ C(v)|] is lower bounded by
the entropy of the uniform distribution on directed edges, i.e.,
log2 2m. So we have 2(H1(G)+ 1) ≥ log2 2m, and thus

H1(G) ≥ 1

2
log2 2m − 1 ≥ 1

2

(
log2 m − 1

)
.

�

B. Graphs With Balanced Weights

In this subsection, we consider the weighted graphs where
self-loops and multi-edges are allowed. Since the multi-edges

between a single pair of nodes can be viewed as a single edge
with the weight that is the sum of those of the multi-edges,
we assume that there are no multi-edges in graphs. So the
number of edges in a graph of size n is at most n(n + 1)/2
but their weights vary. For the positioning entropy of graphs
with balanced weights, we have the following lower bound.

Theorem 21 (Lower Bound of Positioning Entropy of Graphs
of Balanced Weights): Let G = (V , E) be a connected graph
with weight function w. Let m = |E | be the number of edges.
If the ratio of maximum weight and minimum weight is at most
mε , that is maxe∈G {w(e)}

mine∈G {w(e)} ≤ mε , for some constant ε < 1, then:

H1(G) ≥ 1

2

[
(1− ε) log2 m − 1

]
.

Proof: The proof is similar to that of Theorem 20. Here
we consider the random walk in weighted graphs. We also
assume that we have already had a prefix free code {C(u) ∈
{0, 1}∗ : u ∈ V } for V , where C(u) has length |C(u)| =
�− log2

du
vol(G)�. Then we consider every undirected edge (u, v)

to be two directed ones and denote the directed graph by G′, in
which each edge u → v has weight w((u, v)). Then we encode
every directed edge u → v by the codeword C(u) ◦ C(v).
The prefix-freeness of C(·) guarantees the uniqueness of the
codeword for each directed edge of G.

In the random walk, denoted by P , it is easy to verify
that p =

(
d1

vol(G) , . . . ,
dn

vol(G)

)
is a stationary distribution,

and every directed edge u → v is visited with probability
w((u, v))/vol(G). Then when we use the codewords of edges
to represent the random walk, the expected length of codeword
that represents one step random walk is hence

E(u,v)∈P[|C(u) ◦ C(v)|]
=
∑

u∈V

[ du

vol(G)
(

⌈
− log2

du

vol(G)

⌉

+w((u, v))

du

∑

v∈N(u)

⌈
− log2

dv

vol(G)

⌉
)]

=
∑

u∈V

du

vol(G)

⌈
− log2

du

vol(G)

⌉

+
∑

u∈V

∑

v∈N(u)

w((u, v))

vol(G)

⌈
− log2

dv

vol(G)

⌉

=
∑

u∈V

du

vol(G)

⌈
− log2

du

vol(G)

⌉

+
∑

v∈V

∑

u∈N(v)

w((u, v))

vol(G)

⌈
− log2

dv

vol(G)

⌉

=
∑

u∈V

du

vol(G)

⌈
− log2

du

vol(G)

⌉

+
∑

v∈V

dv

vol(G)

⌈
− log2

dv

vol(G)

⌉

≤ 2(H1(G)+ 1).

On the other hand, E(u,v)∈P[|C(u)◦C(v)|] is lower bounded
by the entropy of the probability distribution on edges for the
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random walk in G′. Thus

E(u,v)∈P[|C(u) ◦ C(v)|] ≥ −
∑

e∈G ′

w(e)

vol(G)
log2

w(e)

vol(G)

≥ min
e∈G ′

{
− log2

w(e)

vol(G)

}
. (32)

Since for every edge e, maxe∈G {w(e)}
mine∈G {w(e)} ≤ mε , the above value

is at least

log2
2m ·mine∈G{w(e)}

maxe∈G{w(e)} ≥ log2
2m

mε
= (1− ε) log2 m + 1.

So 2(H1(G) + 1) ≥ (1 − ε) log2 m + 1. Theorem 21
follows. �

We say that a graph is typical, if it is undirected, connected,
and either simple or with weights satisfying the conditions in
Theorem 21.

By Shannon’s theory, for typical graphs, there is a trivial
upper bound of the positioning entropy of the graphs. This is,
for a network G of size n, H1(G) ≤ log2 n holds. The result
follows from the convexity of logarithmic function. This gives
rise to the following

Theorem 22 (Exact Bounds of Positioning Entropy of Typical
Graphs): For a typical graph G, the positioning entropy
of G is

H1(G) = �(log n), (33)

where n is the number of nodes in G.
Proof: By the arguments above. �

According to Theorems 20, 21 and 22, for an undirected
and connected graph G of n nodes and m edges with
balanced weights, the one-dimensional structural information
or positioning entropy of G is H1(G) = α · log n for
some constant α ≤ 1

2 , where the constant α is determined
by the density of the graph, i.e., the number m of edges
of the graph G. However, if the weights of G are highly
unbalanced in the sense that maxe∈G {w(e)}

mine∈G {w(e)} > mδ for some
constant δ, then the one-dimensional structure entropy of G
could be arbitrarily small. Our results demonstrate that the
one-dimensional structure entropy of G is β · log n for some
β determined by both the density of G, and the weights
ratio maxe∈G {w(e)}

mine∈G {w(e)} . Therefore, the one-dimensional structural
information is a quantitative measure that simultaneously
characterises both the density and the weights balance of
graphs.

For any graph G, by definition, the one-dimensional
structural information of G is very easy to compute.
However, this property is no longer true for the two-dimens-
ional structural information of a graph. Of course, the
one-dimensional structural information gives rise a trivial
upper bound for the two-dimensional structural information.

For any graph G, by definition, H1(G) = HP (G) for the
partition P in which each module contains a single node.
Therefore H2(G) ≤ H1(G).

By Equation (33), we have that a trivial upper bound for
the two-dimensional structural information for both simple and
weight balanced graphs.

Proposition 23: For a graph G, if G is either simple or
weights balanced, then

H2(G) = O(log n). (34)

Proof: By definition of the one- and two-dimensional
structural information of graphs. �

X. GENERAL PRINCIPLES OF TWO-DIMENSIONAL

STRUCTURAL INFORMATION OF GRAPHS

In this section, we establish some basic relationships among
the well-known notions of modularity, conductance and the
one- and two-dimensional structural information.

First we recall the notion of modularity and conductance.
Newman and Girvan [42] defined the notion of modularity

to quantitatively measure the quality of community structure
of a network. It is built based on the assumptions that random
graphs are not expected to have community structures and that
a network has a community structure if it is far from random
graphs.

Let G = (V , E) be a network with n nodes and
m edges. Given a partition P of G, the modularity of G by
the partition P is defined by

σP (G) = 1

2m
�i, j (Aij − Pij )δ(Ci , C j ), (35)

where the sum runs over all pairs of vertices, A is the
adjacency matrix, Pij is the expected number of edges between
vertices i and j in a null graph, i.e., a random copy of G.
δ(C j , C j ) = 1 if Ci = C j , and 0 otherwise, Ck is a module
of the partition P .

By Equation (35), σP (G) is intuitively the distance
between G by partition P and its own random copy P .

A standard null model assumes that the expected degree
after averaging over all possible configurations matches the
actual degree of the original graph [27]. Such a null model
is essentially equivalent to the configuration model [37], [39],
in which each node i is associated with di half-edges, where
di is the degree of node i in G, and all the half-edges are
joined randomly. It is easy to see that Pij = di d j/2m. Hence
the modularity of G by P can then be rewritten as follows:

σP (G) =
L∑

l=1

[
kl

m
−
(

Vl

2m

)2
]

, (36)

where L is the number of modules in partition P , kl is the
number of edges whose both endpoints are in module l, and
Vl is the volume of module l. Note that the first term of each
sum term represents the fraction of edges of G inside the
module and the second term represents the expected fraction
of edges that would be in the null model.

We define the modularity of G by

σ(G) = max
P
{σP (G)}. (37)

Many people, especially physicists, take modularity as
a measure of community structure of networks due to the
intuition that if the modularity σ(G) of G is large, then G is
far from the random copy of G, and if σ(G) is small, then G
is close to a random copy of G. In communication theory,
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conductance is used to measure the power of communications
and information spreading. This principle implies that the
power of communications and high modularity of a network
cannot be achieved simultaneously.

Now we are ready to establish our results.
We first introduce the notion of conductance of a graph

which will be frequently used in our results and proofs.
Given a graph G = (V , E), and a subset S of V , the

conductance of S in G is given by

�(S) = |E(S, S̄)|
min{vol(S), vol(S̄)} , (38)

where E(S, S̄) is the set of edges with one endpoint in S and
the other in the complement of S, i.e. S̄, and vol(X) is the sum
of degrees dx for all x ∈ X . The conductance of G is defined
to be the minimum of �(S) over all subsets S’s, that is:

�(G) = min
S⊂V
{�(S)}. (39)

A. Modularity Principle

We first investigate the notion of modularity. Modularity
is built based on the assumption that random graphs are not
expected to have community structure and that a network
has a community structure if it is far from random graphs.
Intuitively, the modularity of a graph G is the distance
between G and its own random copy. Our first result is the
following upper bound of modularity for arbitrarily given
graphs.

For Newman’s modularity, we have the following general
principle.

Theorem 24 (Modularity Principle): Given an arbitrary
graph G = (V , E), let �(G) be the conductance of G.
and σ(G) be the modularity of G. Then, the following
inequality holds:

σ(G) ≤ 1−�(G). (40)

Proof: Suppose that P = {X1, X2, · · · , X L} is a partition
of V with which σ(G) is achieved, that is σ(G) = σP (G).
Recall that for the partition P ,

σP (G) =
L∑

l=1

[
kl

m
−
(

Vl

2m

)2
]
,

where L is the number of modules Xl ’s in partition P , kl is
the number of edges whose both endpoints are in module Xl ,
Vl is the volume of module Xl , and gl is the number of global
edges from Xl to nodes outside of Xl .

Suppose without loss of the generality that for every l,
Vl ≤ m, where m is the number of edges in G.

By the definition of �(G), for each l,

gl

Vl
≥ �(G).

Thus
∑L

l=1 gl∑L
l=1 Vl

≥ �(G).

Note that
∑L

l=1 Vl = 2m and
∑L

l=1 gl is exactly twice of
the number of edges that are between different modules X j ’s
of P , which is also 2(m −∑L

l=1 kl).
Thus

σP (G) =
L∑

l=1

[
kl

m
−
(

Vl

2m

)2
]
≤
∑L

l=1 kl

m
≤ 1−�(G).

Therefore

σ(G) = σP (G) ≤ 1−�(G).

�
By definition, the modularity of a graph G is intuitively the

distance between G and its random copy, and the conductance
�(G) is a measure of combinatorial optimization. The former
is a probabilistic measure, and the latter is a combinatorial
measure. By this reason, the modularity principle is highly
nontrivial. Furthermore, by the modularity principle, we have
that for every graph G, if the conductance of G is large, then
G is close to its random copy, so that G has a random structure,
and that if the modularity of G is large, then G is far from its
random copy, implying that G has a well-defined structure.

B. Difference of the Positioning Entropy and
the Structural Information

In this subsection, we establish a useful relationship between
the one-dimensional and the two-dimensional structure
entropies of an arbitrarily given graph.

Theorem 25 (Difference Principle of the Positioning
Entropy and the Structural Information): Let G = (V , E) be
a connected graph. Suppose that P is a partition of V with
the notations the same as that in the definitions of H1(G)
and HP (G). Then the positioning entropy of G, H1(G), and
the structural information of G by given P , i.e., HP (G),
satisfy the following properties:

(1) The positioning entropy of G satisfies:

H1(G) = −
L∑

j=1

Vj

2m

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j

−
L∑

j=1

Vj

2m
log2

Vj

2m
. (41)

(2)

H1(G)−HP (G) = −
L∑

j=1

Vj − g j

2m
log2

Vj

2m
(42)

(3) Assume that for each j , Vj ≤ m, for m = |E |. Then

H1(G)−HP (G) = −
L∑

j=1

(1−�(X j ))
Vj

2m
log2

Vj

2m

(43)

where �(X j ) is the conductance of X j in G.
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Proof: By Definitions 1 and 6, for the partition P of V ,

HP (G) = −
L∑

j=1

Vj

2m

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j
−

L∑

j=1

g j

2m
log2

Vj

2m
,

(44)

and

H1(G) = H

(
d1

2m
, . . . ,

dn

2m

)
= −

n∑

i=1

di

2m
· log2

di

2m
.

(45)

By the additivity of the entropy function, for the partition P ,

H1(G) = −
L∑

j=1

Vj

2m

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j
−

L∑

j=1

Vj

2m
log2

Vj

2m
.

(1) follows.
The information saved by P is

H1(G)−HP (G) = −
L∑

j=1

Vj − g j

2m
log2

Vj

2m
.

(2) follows.
For every j ∈ {1, 2, · · · , L}, let � j be the conductance of

X j in G, i.e., � j = �(X j ). Then for every j ∈ {1, 2, · · · , L},
if Vj ≤ |E |, then � j = g j

Vj
.

Assume that for each j , Vj ≤ m, for m = |E |. By (2), we
have

H1(G)−HP (G) = −
L∑

j=1

(1−� j )
Vj

2m
log2

Vj

2m
.

(3) follows.
Equation (43) builds a bridge between the positioning

entropy and structural information of a graph through
conductances of the modules of the partition P . By using
this equation, we are able to establish a normalized
structural information principle and a structural information
principle. �

C. Normalized Structural Information Principle and
Structural Information Principle

Recall Definition 11 for the notion of normalised structural
information of a graph G, denoted τ (G) = H2(G)

H1(G)
.

By using Equations (41) and (43), we are able to establish
a normalized structural information principle and a structural
information principle for general graphs. Given a graph
G = (V , E), let �(G) be the conductance of G. Then we
have:

For the normalized two-dimensional structural information,
we have the following general principle.

Theorem 26 (Normalized Structural Information Principle):
Given a graph G = (V , E), let �(G) be the conductance
of G. Then the normalized structural information of G
satisfies the following:

τ (G) ≥ �(G). (46)

Proof: By Equation (41),

H1(G) = −
L∑

j=1

Vj

2m

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j
−

L∑

j=1

Vj

2m
log2

Vj

2m
.

(47)

Let H1 = −∑L
j=1

Vj
2m

∑n j
i=1

d( j)
i
V j

log2
d( j)

i
V j

, and H2 =
−∑L

j=1
Vj
2m log2

Vj
2m .

So H1(G) = H1 + H2.
By Equation (43), we have

τP (G) =: H
P (G)

H1(G)

= H1 −∑L
j=1

g j
2m log2

Vj
2m

H1 + H2

= H1 −∑L
j=1

� j V j
2m log2

Vj
2m

H1 + H2

≥ H1 +�(G) · H2

H1 + H2
≥ �(G). (48)

The result above holds for any nontrivial partition P of G.
Therefore τ (G) ≥ �(G). �

By the result in (46), we have the following theorem.
Theorem 27 (Structural Information Principle): For any

graph G, the structural information of G follows:

H2(G) ≥ �(G) ·H1(G), (49)

where �(G) is the conductance of G, and H1(G) is the
positioning entropy of G.

Proof: By Theorem 26. �
The structural information principle is a result of the

normalized structural information principle. The normalized
structural information principle may have fundamental impli-
cations in both theory and new applications. For instance,
it says that the information theoretical notion of normalized
structural information can be lower bounded by the combi-
natorial measure of conductance. Notice that, both structural
information and conductance are fundamental measures in
complex systems, including networks. This implies that both
the normalized structural information principle and the struc-
tural information principle may play an essential role in not
only networks, but also other complex systems in nature and
society.

The structural information principle poses a dilemma
for communication networks. Let G = (V , E) be
a communication network. To make sure that information
can be easily and quickly spread in the whole network G,
we usually require that for any set S ⊂ V , the conductance
of S in G is large, so that the conductance of G is
large. However, by the normalized structural information
principle, if �(G) is large, then local positioning system in G
becomes hard. This means that the optimization of information
spreading in networks and the best positioning system of
the networks can not be achieved simultaneously. This is
a network dilemma explored by our structural information
principle.
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The network dilemma can be interpreted as either the
incompressible principle of network information or the
hardness principle of network positioning. The reason is that
in engineering networks, traditionally, it is required that the
networks are expanders in the sense that the conductances
of the networks are large. However, network information
compression and positioning in networks require that the
two-dimensional structural information of the networks are
minimised. Theorem 27 indicates that if the conductance �(G)
of network G is large then the two-dimensional structural
information H2(G) of G cannot be small. The challenge must
be resolved by new theory of networks, consisting of both
a local theory and a global theory such that the minimisation
of two-dimensional structural information is realised by the
local theory, and the expanding requirement is satisfied by
a global core of the network that is an expander, details are
referred to [31] and [34].

XI. LOWER BOUNDS OF TWO-DIMENSIONAL

STRUCTURAL INFORMATION FOR GRAPHS

In this section, we establish the lower bounds of
two-dimensional structural information for simple graphs and
the graphs with balanced weights.

A. Simple Graphs

Theorem 28 (Lower Bounds of Two-Dimensional Structural
Information of Simple Graphs): Let G = (V , E) be an
undirected, connected and simple graph with number of edges
|E | = m. Then the two-dimensional structural information
of G satisfies

H2(G) = �(log2 log2 m). (50)

Proof: At the beginning of this proof, we introduce
a useful property called additivity of our positioning entropy,
which is in general the additivity of the entropy function H
and can be verified directly. We omit its proof here.

Lemma 29 (Additivity Law): For any partition P =
{V1, . . . , VL} of V , the positioning entropy of graph G defined
as Equation (10) satisfies

H1(G) =
L∑

j=1

vol(Vj )

2m
· H
(

d( j )
1

vol(Vj )
, . . . ,

d( j )
n j

vol(Vj )

)

−
L∑

j=1

vol(Vj )

2m
log2

vol(Vj )

2m
. (51)

By comparing this with the definition of structural
information Equation (14), we find that the only difference
between these two is the coefficients in the second summation.
Since we have known by Theorem 20 that H1(G) ≥
1
2 (log2 m − 1), we only need to show that the value will
not decrease too much after being converted to the form of
HP for any partition P .

Then we assume that each module Vj in partition P is
connected. We can make this assumption for the following
reason. Suppose without loss of generality that V1 is
disconnected, that is, V1 = U1 ∪ U2 and there is no

edge between U1 and U2. Define a new partition P ′ =
{U1, U2, V2, V3, . . . , VL}. We can prove that HP (G) ≥
HP ′(G), and thus a lower bound for HP ′(G) is also a lower
bound for HP (G).

Lemma 30:

HP (G) ≥ HP ′(G).

Proof: For node sets X and Y , let e(X, Y ) denote the
number of edges between X and Y , and e(X, X) denote that
within X . Note that in the expression of HP (G) − HP ′(G),
the terms unrelated to V1 can be canceled. Since e(V1, V 1) =
e(U1, U1)+ e(U2, U2), we have

HP (G)−HP ′(G)

= −
∑

v∈V1

dv

2m
log2

dv

vol(V1)
+
⎛

⎝
∑

v∈U1

dv

2m
log2

dv

vol(U1)

+
∑

v∈U2

dv

2m
log2

dv

vol(U2)

⎞

⎠− e(V1, V 1)

2m
log2

vol(V1)

2m

+
(

e(U1, U1)

2m
log2

vol(U1)

2m
+ e(U2, U 2)

2m
log2

vol(U2)

2m

)

= 1

2m

⎛

⎝
∑

v∈U1

dv log2
vol(V1)

vol(U1)
+
∑

v∈U2

dv log2
vol(V1)

vol(U2)

⎞

⎠

+ 1

2m
(e(U1, U1) log2 vol(U1)

+ e(U2, U 2) log2 vol(U2)− e(V1, V 1) log2 vol(V1))

= 1

2m

(
e(U1, U1) log2

vol(V1)

vol(U1)
+ e(U2, U2) log2

vol(V1)

vol(U2)

)

≥ 0. (52)

Lemma 30 follows. �
To simplify the notations, for each j ∈ [L], we denote

ρ j := vol(Vj )

2m
,

H j := −
∑

v∈Vj

dv

vol(Vj )
log2

dv

vol(Vj )
,

and

�(Vj ) := g j

vol(Vj )
.

Here H j is in fact the positioning entropy within module
Vj and �(Vj ) is its conductance. Then we show that for
each module Vj , either its conductance is not too low or the
positioning entropy within it is not too small. Let 0 < γ < 1
be a constant. Then we have

Lemma 31: For each module Vj ∈ P , we have that either
�(Vj ) ≥ 1/ logγ

2 m or H j ≥ γ
3 log2 log2 m holds.

Proof: We only have to show that if �(Vj ) < 1/ logγ
2 m,

then H j ≥ γ
3 log2 log2 m.

Consider the following multi-graph G j : the node set of
G j is just Vj and all edges of G within Vj are preserved.
For the edges in G with exactly one endpoint in Vj , we
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cut off them and match all the remaining half-edges in Vj

freely (self-loops are permitted and each accounts for one to
degree). We denote the resulting multi-graph by G j . By this
construction, the maximum weight (multiple number) of edges
in G j is at most g j . Note that the positioning entropy of G j

is exactly H j since the degrees of all nodes are preserved
from G. Noting that G j is connected, by Equation (32) in the
proof of Theorem 21, we know that

2(H j + 1) ≥ log2
vol(G j )

maxe∈G j {w j (e)} ,

where w j is the weight function in G j . Since G is
a simple graph, maxe∈G j {w j (e)} ≤ g j . Since �(Vj ) =
g j/vol(G j ) < 1/ logγ

2 m, we have that

H j ≥ 1

2
log2

vol(G j )

g j
− 1 ≥ γ

3
log2 log2 m

holds for sufficiently large m. Lemma 31 follows.
�

Recall that

H1(G) =
∑

j∈[L]
ρ j ·
(
H j − log2 ρ j

) ≥ 1

2
log2 m − 1,

and

HP (G) =
∑

j∈[L]
ρ j ·
(
H j −�(Vj ) log2 ρ j

)
.

Now, to complete the proof of Theorem 28, we divide the
modules in P into two subsets according to Lemma 31. Define

A = { j ∈ [L] : �(Vj ) ≥ 1

logγ
2 m
},

and

B = [L] \ A.

By Lemma 31, we know that for any j ∈ B , H j ≥
γ
3 log2 log2 m. Let 0 < c < 1/2 be a constant. We consider
the following two cases:

Case 1: If
∑

j∈A ρ j
(
H j − log2 ρ j

) ≥ c log2 m − 1, then

HP (G) ≥
∑

j∈A

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥ c ·�(Vj ) log2 m − 1 ≥ c log1−γ
2 m − 1.

Case 2: Otherwise,
∑

j∈A ρ j
(
H j − log2 ρ j

)
< c log2 m−1,

and thus
∑

j∈B ρ j
(
H j − log2 ρ j

)
>( 1

2 − c
)

log2 m. We consider the following two
subcases:

Subcase 1: If
∑

j∈B ρ j H j ≥
( 1

4 − c
2

)
log2 m, then certainly

HP (G) ≥
∑

j∈B

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥
(

1

4
− c

2

)
log2 m.

Subcase 2: Otherwise,
∑

j∈B ρ j H j <
( 1

4 − c
2

)
log2 m, and

thus −∑ j∈B ρ j log2 ρ j >
( 1

4 − c
2

)
log2 m.

Since − log2 ρ j ≤ log2
1

2m = log2 m + 1,
we know that

∑

j∈B

ρ j ≥ 1

4
− c

2

holds for sufficiently large m. Therefore,

HP (G) ≥
∑

j∈B

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥
∑

j∈B

ρ j H j ≥ γ

3

(
1

4
− c

2

)
log2 log2 m.

Putting all cases together, we know that HP (G) =
�(log2 log2 m) for any partition P . Theorem 28 follows. �

B. Graphs With Balanced Weights

Theorem 32 (Lower Bound of Two-dimensional Structural
Information of Graphs with Balanced Weights): Let G =
(V , E) be a connected graph with weight function w. Let
m = |E | be the number of edges. If the ratio of maximum
weight and minimum weight is at most logε

2 m, that is
maxe∈G {w(e)}
mine∈G {w(e)} ≤ logε

2 m, for some constant ε < 1, then the
structural information of G satisfies

H2(G) = �(log2 log2 m). (53)

Proof: The proof is similar to that of Theorem 28. It is
easy to verify that for weighted graphs with corresponding
definitions of degree and volume given in Definition 2,
Lemma 29 and 30 still hold.

Suppose that the maximum weight of edges in G is W+ and
the minimum one is W−. So W+/W− ≤ logε

2 m. For a node
set S ⊆ V , let ∂(S) denote the set of edges in G which have
exactly one endpoint in S, and w(∂(S)) denote the sum of the
weights of edges in ∂(S). Denote

ρ j := vol(Vj )

vol(G)
,

H j := −
∑

v∈Vj

dv

vol(Vj )
log2

dv

vol(Vj )
,

and

�(Vj ) := w(∂(Vj ))

vol(Vj )
.

As an analogue to Lemma 31, the following lemma can be
proved. Let ε ≤ γ < 1 be a constant.

Lemma 33: For each module Vj ∈ P , we have that either
�(Vj ) ≥ 1/ logγ

2 m or H j ≥ 1
3 (γ − ε) log2 log2 m holds.

Proof: Similarly to the proof of Lemma 31, we only
have to show that if �(Vj ) < 1/ logγ

2 m, then H j ≥ 1
3

(γ − ε) log2 log2 m.
Construct weighted multi-graph G j as follows: the node set

of G j is Vj and all edges of G within Vj are preserved. For
the edges in G with exactly one endpoint in Vj , each of them
forms a self-loop and its weight is maintained. If there are
more than one self-loops associating to a single node, then
merge them to be one self-loop and its weight is the sum of
the weights of them. By the construction, the maximum weight
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of edges in G j is at most w(∂(Vj ))+W+. Since the degree of
each node in G j has been preserved from G, the positioning
entropy of G j is exactly H j . By Equation (32) again, we know
that

2(H j + 1) ≥ log2
vol(G j )

maxe∈G j {w j (e)} ≥ log2
vol(G j )

w(∂(Vj ))+ W+
,

where w j is the weight function in G j . Since G is connected,
∂(Vj ) is not empty, and so w(∂(Vj )) must be at least W−.
Since �(Vj ) = w(∂(Vj ))/vol(Vj ) < 1/ logγ

2 m, we have that

w(∂(Vj )) ≥ W− ≥ W+

logε
2 m

,

and thus, W+ ≤ w(∂(Vj )) · logε
2 m. Therefore,

H j ≥ 1

2
log2

vol(G j )

w(∂(Vj ))+ W+
− 1

≥ 1

2
log2

vol(G j )

(1+ logε
2 m) · w(∂(Vj ))

− 1

≥ 1

2
log2

logγ
2 m

1+ logε
2 m

≥ 1

3
(γ − ε) log2 log2 m

holds for sufficiently large m. Lemma 33 follows. �
Then we divide the modules in P into three subsets as

follows. For each j ∈ [L], let m(G j ) denote the number of
edges in G j . So G j is also the number of edges in G each of
which has at least one endpoint in Vj . Define

A = { j ∈ [L] : �(Vj ) ≥ 1

logγ
2 m
},

B = { j ∈ [L] : m(G j ) ≤ log
1−ε

2
2 m},

and

C = [L] \ (A ∪ B)

By Lemma 33, we know that for any j ∈ C , �(Vj ) <
1/ logγ

2 m, and so H j ≥ 1
3 (γ − ε) log2 log2 m. Recall that by

Theorem 21,

H1(G) ≥ 1

2

[
(1− ε) log2 m − 1

]
.

Consider the following three cases:
Case 1: If

∑
j∈A ρ j

(
H j − log2 ρ j

) ≥ 1
6 (1 − ε) log2 m − 1

2 ,
then

HP (G) ≥
∑

j∈A

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥
[

1

6
(1− ε) log2 m − 1

2

]
·�(Vj )

≥ 1

6
(1− ε) log1−γ

2 m − 1

2
.

Case 2: Otherwise, if
∑

j∈B ρ j
(
H j − log2 ρ j

) ≥ 1
6

(1− ε) log2 m, then

�(Vj ) ≥ W−
vol(G j )

≥ W−
2m(G j ) ·W+

≥ 1

2 log
1−ε

2
2 m · logε

2 m
= 1

2 log
1+ε

2
2 m

.

So

HP (G) ≥
∑

j∈B

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥
[

1

6
(1− ε) log2 m

]
·�(Vj )

≥ 1

12
(1− ε) log

1−γ
2

2 m.

Case 3: Otherwise, we know that
∑

j∈A∪B ρ j(
H j − log2 ρ j

)
< 1

3 (1 − ε) log2 m − 1
2 .

Since [L] = A ∪ B ∪ C , we have that∑
j∈C ρ j

(
H j − log2 ρ j

) ≥ 1
6 (1 − ε) log2 m.

We consider the following two subcases:

Subcase 1: If
∑

j∈C ρ j H j ≥ 1
12 (1− ε) log2 m, then

HP (G) ≥
∑

j∈C

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥
∑

j∈C

ρ j H j ≥ 1

12
(1− ε) log2 m.

Subcase 2: Otherwise,
∑

j∈C ρ j H j < 1
12 (1−ε) log2 m, and

thus −∑ j∈C ρ j log2 ρ j > 1
12 (1 − ε) log2 m.

Since for any j ∈ C ,

− log2 ρ j = log2
vol(G)

vol(Vj )

≤ log2
2m ·W+

2m(G j ) · W−
≤ log2

m logε
2 m

log
1−ε

2
2 m

≤ log2 m + log2 log2 m

≤ 2 log2 m,

we have that
∑

j∈C

ρ j ≥ 1

24
(1− ε).

Therefore,

HP (G) ≥
∑

j∈C

ρ j ·
(
H j −�(Vj ) log2 ρ j

)

≥
∑

j∈C

ρ j H j

≥ 1

24
(1− ε) · 1

3
(γ − ε) log2 log2 m

= 1

72
(1− ε)(γ − ε) log2 log2 m.

Putting all cases together, we know that HP (G) =
�(log2 log2 m) for any partition P . Theorem 32 follows. �

We notice that the proofs of Theorems 28 and 32 contain
a general method for establishing lower bounds for the
2-dimensional structural information of graphs. The method
consists of a few lemmas, that is, the additivity property in
Lemma 29, the connected property in Lemma 30, the module
property in Lemma 31, and the analysis of divided cases etc.
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XII. UPPER BOUNDS OF TWO-DIMENSIONAL

STRUCTURAL INFORMATION OF CLASSIC

DATA STRUCTURES

In this section, we will establish the upper bounds of
two-dimensional structure entropies of the graphs correspond-
ing to classical data structures. We will show that trees, grids
and the networks generated from the small world model with
appropriate choice of parameters satisfy a (two-dimensional)
structural information minimization principle.

A. Trees

For simplicity, we suppose without loss of the generality
that the trees are complete binary trees. A complete binary
tree is a tree whose non-leaf nodes has exactly two children
and every leaf node has the same depth (In this section, for
notational simplicity, we define the depth of a node to be the
number of nodes on the unique path from this node to the
root). So the complete binary tree of depth H has exactly
2H − 1 nodes. Then we have the following theorem.

Theorem 34 (Upper Bounds of Structural Information of
Trees): Let T be a complete binary tree of depth h and thus of
size n = 2h −1. Then the structural information of T satisfies

H2(T ) ≤ log2 log2 n + 4+ o(1). (54)

Proof: It suffices to define a partition P of the nodes
in T such that HP (T ) ≤ log2 log2 n + 4 + o(1). We define
P as follows. Let 1 ≤ k ≤ h be an integer. We partition every
subtree whose root is a node of depth h − k + 1 as a module
and the remaining part consisting of all the nodes of depth at
most h − k as a module. Now we have 2h−k complete binary
subtrees, each of which, denoted by Tj , j = 1, 2, . . . , 2h−k ,
has a size 2k−1 and another complete binary subtree, denoted
by T ′, which has a size 2h−k−1. A simple calculation indicates
that for each Tj , its volume vol(Tj ) = 2k+1−3, and the volume
of T ′ is vol(T ′) = 3 · 2h−k − 4.

For each Tj , we have

−
∑

v∈Tj

dv

2m
log2

dv

vol(Tj )

= −(2k−1 − 1) · 3

2m
log2

3

2k+1 − 3

− 2k−1 · 1

2m
log2

1

2k+1 − 3

≤ 1

2m

[
(2k−1 − 1) · 3(k + 1)+ 2k−1(k + 1)

]

≤ 2k+1

2m
(k + 1).

So

−
2h−k∑

j=1

vol(Tj )

2m

∑

v∈Tj

dv

vol(Tj )
log2

dv

vol(Tj )

= −
2h−k∑

j=1

∑

v∈Tj

dv

vol(Tj )
log2

dv

vol(Tj )

≤ 2h−k · 2k+1

2m
(k + 1).

Note that each Tj has exactly one global edge connecting
to T ′. So the number of global edges for each Tj is g j = 1.
We have

−
2h−k∑

j=1

g j

2m
log2

vol(Tj )

2m

= −2h−k · 1

2m
log2

2k+1 − 3

2m

= 2h−k

2m
·
[

log2 2m − (k + 1)+ O

(
1

2k

)]
.

Then consider the subtree T ′. Note that all the nodes in T ′
except for the root of T which has degree 2, have degree 3. So

−
∑

v∈T ′

dv

2m
log2

dv

vol(T ′)

= −(2h−k − 2) · 3

2m
log2

3

3 · 2h−k − 4

− 2

2m
log2

2

3 · 2h−k − 4

≤ 2h−k

2m
· 3(h − k).

Note that T ′ has gT ′ = 2h−k global edges, each of which
joins a subtree Tj . We have

−gT ′

2m
log2

vol(T ′)
2m

= −2h−k

2m
log2

3 · 2h−k − 4

2m

= 2h−k

2m
·
[

log2 2m − (h − k)+ O

(
1

2h−k

)]
.

So in all, noting that log2 2m = log2(2
h+1 − 4) ≤ h + 1,

the structural information of T by partition P is

HP (T ) = −
2h−k∑

j=1

vol(Tj )

2m

∑

v∈Tj

dv

vol(Tj )
log2

dv

vol(Tj )

−
2h−k∑

j=1

g j

2m
log2

vol(Tj )

2m

−
∑

v∈T ′

dv

2m
log2

dv

vol(T ′) −
gT ′

2m
log2

vol(T ′)
2m

≤ 2h−k

2m
· 2k+1(k + 1)

+2h−k

2m
·
[

log2 2m − (k + 1)+ O

(
1

2k

)]

+2h−k

2m
· 3(h − k)

+2h−k

2m
·
[

log2 2m − (h − k)+ O

(
1

2h−k

)]

≤ 2h−k

2h+1 − 4
·
[
(2k+1 + 1)(k + 1)+ 4(h − k)

+ O

(
1

2k

)
+ O

(
1

2h−k

)]
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≤ (k + 1)+ 4(h − k)

2k+1

+ O

(
k + 1

2k
+ k + 1

2h−k
+ h − k

2h

)
.

When we choose k + 1 = �log2 h�, the above value is at
most �log2 h� + 4 + o(1), which is log2 log2 n + 4 + o(1).
Theorem 34 follows. �

We emphasize that the upper bounds in Theorem 34 can
be established for all trees of constant bounded degrees, for
which the proofs are all similar to that for the complete binary
trees.

B. Grid Graphs

An n × n grid G = (V , E) is a graph defined on the node
set V = {vi, j : i, j ∈ Z

+, 1 ≤ i, j ≤ n} and the edge set
E = {(vi, j , vi, j ′ ) : | j − j ′| = 1}⋃{(vi, j , vi ′, j ) : |i − i ′| = 1}.
For the structural information of grid graphs, we have the
following theorem.

Theorem 35 (Upper Bound of Two-Dimensional Structural
Information of Grid Graphs): Let G = (V , E) be an n × n
grid graph. Then the two-dimensional structural information
of G satisfies

H2(G) ≤ 2 log2 log2 n + O(1). (55)

Proof: Note that the size of G is |V | = n2 and the number
of edges is m = |E | = 2n(n − 1). Similarly to the proof of
Theorem 34, we find a partition P for the nodes in G to
witness the upper bound.

We divide G into sub-grids of size k × k. For notational
simplicity, assume that n can be divided by k. So we have
exactly

( n
k

)2 such sub-grids. For each sub-grid, denoted by

G j , let d( j )
i denote the degree of the i -th node, which is 4 for

most nodes, 3 for border nodes and 2 for corner nodes of G.
By the extremum property of the entropy function H (·), the
positioning entropy within G j satisfies

H

(
d( j )

1

vol(G j )
, · · · , d( j )

k2

vol(G j )

)
≤ log2 k2 = 2 log2 k.

So

∑

j

vol(G j )

2m
· H
(

d( j )
1

vol(G j )
, · · · , d( j )

k2

vol(G j )

)
≤ 2 log2 k.

Since the total number of global edges is
∑

j

g j = 2n
(n

k
− 1
)

,

and noting that m = 2n(n − 1), we have

−
∑

j

g j

2m
log2

vol(G j )

2m

≤
⎛

⎝
∑

j

g j

⎞

⎠ · 1

2m
log2 2m

≤ n − k

2k(n − 1)
· (2 log2 n + 2) ≤ log2 n + 1

k
.

So in all, we have that the structural information of G by
partition P is

HP (G) =
∑

j

vol(G j )

2m
· H
(

d( j )
1

vol(G j )
, · · · , d( j )

k2

vol(G j )

)

−
∑

j

g j

2m
log2

vol(G j )

2m

≤ 2 log2 k + log2 n + 1

k
.

Let k = O(log2 n), then HP (G) ≤ 2 log2 log2 n + O(1).
Theorem 35 follows. �

Although we have only focused on the two-dimensional
grid, our analysis can be generalized to k-dimensional grids
for any constant k (natural number). In the k-dimensional case,
for a grid of size nk , the structural information can be shown
to be at most k log2 log2 n + O(1).

Finally, we have the following.
Theorem 36 (Structural Information of Classical Data

Structures): If G is a tree or a grid, then, almost sure, we
have

H2(G) = �(log2 log2 n).

Proof: By combining Theorems 34, 35, 28 and 32. �

XIII. TWO-DIMENSIONAL STRUCTURAL

INFORMATION OF NETWORKS

In this section, we establish the upper bounds of
two-dimensional structural information of the expander
graphs, and the networks of the PA model.

A. Expander Graphs

For expander graphs, we have
Theorem 37 (Expanders): Let {Gn} be a family of

expanders, each of which is either a simple graph or a graph
with balanced weights on edges. Then for each G = Gn, we
have that

H2(G) = �(log n). (56)

Proof: By definition of expanders, there is a constant
0 < α < 1 such that for any n, and G = Gn , the conductance
of G satisfies �(G) ≥ α. By the normalized structural
information principle (Theorem 26), the two-dimensional
structural information of G, satisfies H2(G) ≥ �(G) ·H1(G).
By Theorem 22, H1(G) = �(log n). This gives the desired
result H2(G) = �(log n). �

B. Preferential Attachment Model

For nontrivial networks of the PA model, we have
Theorem 38 (Scale-Free Networks): For d ≥ 2, let G be

a network of n nodes generated by the PA model with edge
parameter d. Then with probability 1− o(1), we have that

H2(G) = �(log n). (57)

Proof: For a network, G say, generated by the PA model,
it has been proved that, when d ≥ 2, there is a large
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constant α > 0 such that almost surely, i.e., with probability
1−o(1), the conductance of G is larger than or equal to α, i.e.,
�(G) ≥ α [38]. Note that in the PA model, the number of
multiple edges between any two nodes is at most d . Combing
Theorems 20 and 21, the normalized structural information
principle gives the desired result of the theorem. �

Notice that the theorem holds only for d ≥ 2. When d = 1,
the graph constructed by the PA model is a tree, for which the
two-dimensional structural information is �(log log n), to be
established in the next two sections.

C. Uniform Attachment Model
Li et al. [33] proposed the security model of network.

The authors [34] have shown that for appropriately large
affinity exponent, the networks generated by the security
model are provably secure resisting global cascading failure
for any attacks of logO(1) n scales. In the same paper, the
authors showed that the networks generated by the security
model have an expander global core, satisfying the engineering
requirement of efficient transportation and communication of
information in the whole network. The global core is realised
by the uniform attachment given below.

Definition 39 (Uniform Attachment Model [34]): Given
a natural number d, we construct a network by stages as
follows.

Stage 0: Let G0 be an arbitrarily given initial graph.
Stage t + 1: Let Gt be the graph constructed by the end of

stage t.
(1) Create a new node v.
(2) Crate d edges from v to nodes in Gt each of which is

chosen randomly and uniformly among the nodes in Gt .
For the networks of the uniform attachment model, we have
Theorem 40 (Expander Theorem of the Uniform Attachment

Model): Given a natural number d, let G be a network
generated by the attachment model. Then, with probability
1− o(1), the following properties hold:

(1) If d = 1, then G is a tree with height bounded by
O(log n).

(2) If d > 1, then there is a constant α (related to d) such
that the conductance �(G) of G is at least α.

Proof: By the Expander Core Theorem of networks of the
security model, that is, [34, Th. 6.7]. �

Theorem 41 (Two-Dimensional Structural Information of
the Networks of Uniform Attachment Model): Given d, let
G be a network of the uniform attachment model. Then, with
probability 1− o(1), the following properties hold:

(1) If d = 1, then H2(G) = �(log log n).
(2) If d > 1, then H2(G) = �(log n).

Proof: By Theorems 40, 27 and 36. �
Remark: The uniform attachment model is in fact

a dynamical version of random model of graphs. Theorem 41
indicates that a connected network generated randomly
and uniformly cannot have low two-dimensional structural
information.

D. ER Model

For the ER model, the random graph of the model [22], are
disconnected, in which case, the two-dimensional structural

information of the graph is the weighted summation of the
two-dimensional structural information of all the connected
components. However, for p is large, Li and Peng [35] have
shown

Theorem 42 (Li and Peng [35]): Let p = ln(n·ω(n))
n , where

ω(n) is a function goes to infinity arbitrarily slow. Let G be
the network of the ER model. Then, probability 1− o(1), the
following properties hold:

(1) G is connected.
(2) There is a constant α such that the conductance of G is

at least α.
We thus have
Theorem 43 (Two-Dimensional Structural Information of

Networks of the ER Model): Let p = ln(n·ω(n))
n , where ω(n)

is a function goes to infinity arbitrarily slow. Let G be the
network of the ER model. Then, probability 1 − o(1), the
following property holds:

H2(G) = �(log n).

Proof: By Theorems 21, 27 and 42. �

E. Small World Model

The upper bound result for the grids can be easily extended
to perturbed grids such as the grid-like graphs generated by
Kleinberg’s well-known small world model [25], in which
an underlying structure of the grid is endowed with mild
randomness which reduces the diameter exponentially.

A network G of size n × n is constructed in the following
way: Let Ĝ be a grid of size n × n, r ≥ 0 be a constant
and d(u, v) denote the distance of nodes u and v on Ĝ.
Each node u chooses a long-contact v independently with
probability proportional to d(u, v)−r and edge (u, v) is added.
We will show that the structural information of the small
world model with parameter r ≥ 2 is O(log log n) with high
probability (over the construction of networks).

Theorem 44 (Upper Bound of Two-Dimensional Structural
Information of Networks Generated by Kleinberg’s Small
World Model With r ≥ 2): Let G = (V , E) be
a network of size n × n constructed from the small world
model with parameter r ≥ 2. Then with probability 1 −
exp
{
−�
(

n2

log n

)}
, the two-dimensional structural information

of G is O(log log n).
Proof: Note that in the small world model, each node u

chooses a long-contact v independently. We can partition V
first and then consider the edges (including the long-contact
edges and grid edges in Ĝ) among modules.

For a node u, all the nodes whose distance to u is at most k
in Ĝ for some integer k ≥ 1 form a diamond of size 2k2 +
2k+1 whose center is u (when u is far from the border of Ĝ).
Then V can be partitioned into �(n2/k2) such diamonds with
incomplete ones on the border.

By the extremum property of the entropy function H (·)
again, the positioning entropy within each diamond, denoted
by G j , is at most log2 |G j | = O(log k), and so

∑

j

vol(G j )

2m
· H
⎛

⎝ d( j )
1

vol(G j )
, · · · ,

d( j )
|G j |

vol(G j )

⎞

⎠ = O(log k).
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Then we consider the number of edges among the diamonds.
For a fixed G j , let ĝ j denote the number of edges in Ĝ that
have exactly one end in G j , and let g j denote the number
of long-contact edges have exactly one end in G j . Then the
total number of edges with exactly one endpoint in G j is
g j = ĝ j + g j . A simple calculation gives

ĝ j = 4(2k + 1).

Then we turn to calculate g j .
Note that g j is a random variable depending on the

long-contacts. For each node u ∈ G j and v ∈ ¬G j , the
complement of G j , let Xu,v ∈ {0, 1} be the indicator random
variable to represent whether or not there is a long-contact
edge between u and v. Let Xu,¬G j =

∑
v∈G j

Xu,v .

Note that on grid Ĝ, the number of nodes whose distance
is exactly d from u is 4d . Let

A =
n∑

d=1

4d · d−r = 4
n∑

d=1

d1−r .

Note that for a node u ∈ G j whose distance in Ĝ to
the center of G j is i , its distance to ¬G j is k − i . So the
expectation of g j is

E(g j ) =
∑

u∈G j

E[Xu,¬G j ]

=
∑

u∈G j

∑

v∈¬G j

E[Xu,v ]

=
∑

u∈G j

∑

v∈¬G j

d−r
u,v

A

= �

(
1

A
·

k∑

i=1

n∑

d=k−i

d1−r

)
. (58)

For r = 2, A = �(log n), and so

E(g j ) = �

(
1

A
·

k∑

i=1

(log n − log(k − i))

)

= �

(
1

A
· (k log n − k log k)

)

= �

(
k

log n
log

n

k

)
.

So the total number of long-contact edges is expected to be

E(
∑

j

g j ) = �

((
k

log n
log

n

k

)
·
(n

k

)2
)

= �

(
n2

k

(
1− log k

log n

))
.

We will use the following form of Chernoff bound.
Lemma 45 (Chernoff Bound [14]): Let X1, . . . , Xn be

independent random variables with Pr[Xi = 1] = pi and

Pr[Xi = 0] = 1 − pi . Denote the sum by X =
n∑

i=1
Xi with

expectation E(X) =
n∑

i=1
pi . Then we have

Pr[X ≤ E(X)− λ] ≤ exp

(
− λ2

2E(X)

)
,

Pr[X ≥ E(X)+ λ] ≤ exp

(
− λ2

2(E(X)+ λ/3)

)
.

Let k = �(log n). Since the long-contact edges are
created independently, by the Chernoff bound, when we
choose λ = E(

∑
j g j )/2, we know that with probability

1 − exp{−�(n2/ log n)}, the total number of long-contact
edges is at most O(n2/ log n).

Thus, with probability 1 − exp{−�(n2/ log n)}, the total
number of edges among the diamonds is

∑

j

g j =
∑

j

(ĝ j + g j )

= 4(2k + 1) · O
(

n2

k2

)
+ O

(
n2

k

)

= O

(
n2

log n

)
.

Therefore, with probability 1− exp
{
−�
(

n2

log n

)}
, the total

number of edges

m = 2n(n − 1)+ 1

2

∑

j

g j = �(n2),

and

−
∑

j

g j

2m
log2

vol(G j )

2m
≤
⎛

⎝
∑

j

g j

⎞

⎠ · 1

2m
log2 2m = O(1).

The structural information of G by partition P is

HP (G) =
∑

j

vol(G j )

2m
· H
(

d( j )
1

vol(G j )
, · · · , d( j )

k2

vol(G j )

)

−
∑

j

g j

2m
log2

vol(G j )

2m

= O(log k)+ O(1)

= O(log log n).

For r > 2, A = O(1), and by Equation (58),

E(g j ) =

⎧
⎪⎨

⎪⎩

O(k3−r ) if 2 < r < 3,

O(log k) if r = 3,

O(1) if r > 3.

When k = �(log n), we can always show that with
probability 1 − exp

{
−�
(

n2

log n

)}
, the total number of edges

among the diamonds is O(n2/ log n). The same result can be
obtained by a similar proof.

This completes the proof of Theorem 52. �
Theorems 34, 35 and 52 demonstrate that the 2-dimensional

structural information of the graphs for classical data structures
is O(log log n). We will show that this upper bound is actually
the lower bound.
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F. Phase Transition Theorem of Structural Information of
Networks of Kleinberg’s Small World Model

In this section, we establish the full characterizations of
the two dimensional structural information of networks of the
small world model introduced by Kleinberg.

Theorem 46 (Phase Transition Theorem of Two-Dimensi-
onal Structural Information of Networks of the Small World
Model): Let G be a network generated from the small world
model with parameter r ≥ 0. Then the two-dimensional
structural information has a sharp phase transition at the point
r = 2. That is,

(1) if r ≥ 2, then with probability 1 − o(1), H2(G) =
O(log log n);

(2) if r < 2, then with probability 1 − o(1), H2(G) =
�(log n).

Proof: The first item is just Theorem 52. We only have
to prove (2).

When r < 2, Flaxman has proved that the edge expansion,
which is the minimum ratio between the outgoing edges of
a subset of nodes and its volume, is a constant with probability
1−o(1) [24]. That is, for every subset S of nodes, the number
of edges between S and its complement ¬S, denoted by
e(S,¬S), is at least δ|S| for some constant δ > 0. Note that the
edges whose both ends are in S consist of two parts: those from
the underlying grid and those contributed by long-contacts.
The former ones is at most 2|S| and the latter ones is at
most |S|. So vol(S) ≤ 6|S|+e(S,¬S). Thus the conductance
of S satisfies

�(S) = e(S,¬S)

vol(S)
≥ e(S,¬S)

6|S| + e(S,¬S)
≥ δ

6+ δ
,

which is a constant. By Theorem 40, H2(G) = �(log n).
This completes the proof of Theorem 46. �
By Theorems 36, 46, 38, 41 and 43, we observe

an interesting phenomenon that for networks of either
classical data structure, or generated by classical models, the
two-dimensional structure entropies of the graphs are either
O(log log n) or �(log n), where n is the number of nodes of
the graphs. This poses an interesting question: Does the nature
really have only two types of networks with two-dimensional
structural information either O(log log n), meaning at most
c · log log n for some constant c, or �(log n), meaning at least
d · log n for some constant d? We will answer this question by
introducing a new model of networks, the homophyly/kinship
model.

XIV. TWO-DIMENSIONAL STRUCTURAL INFORMATION

OF NATURE EVOLVING

A. Homophyly/Kinship Model

Real world networks consist of natural communities which
play an essential role in the networks. To understand
the intrinsic mechanism of the natural communities of
the networks that are naturally evolving, the authors and
colleagues [31] proposed the homophyly/kinship model of
networks to realise the networks naturally evolving in the real
world. The model is established by paralleling the Darwin’s
evolution theory [18]. According to Darwin’s theory, animals

from ants to people from social groups in which most
individuals work for the common good, which is a type of
fitness of species in the evolution. For the social groups
of animals in the evolution, kinship plays the key role.
By paralleling Darwin’s theory, we introduce the notion of
affinity exponent to capture the idea of kinship in Darwin’s
evolution theory, and propose the homophyly/kinship model
by following the ideas of Darwin’s individual fitness proposal
and natural selection.

The model proceeds as follows.
Definition 47 (Homophyly/Kinship Model [31]): Given

affinity exponent a ≥ 0 and natural number d:
1) Let Gd be an initial d-regular graph in which each node

is associated with a distinct colour and is called a seed.
(The initial graph could be an arbitrarily given graph,
which does not change the results of the model.)
For i > d, let Gi−1 be the graph constructed at the end
of step i − 1, and let pi = 1

(log i)a .
2) At step i , we create a new node v.
3) (Preferential attachment) With probability pi , v chooses

a new colour, in which case
a) we call v a seed, and
b) create d edges from v to nodes in Gi−1, chosen

with probability proportional to the degrees in
Gi−1.

4) (Homophyly/kinship) Otherwise, then v chooses an old
colour, in which case

a) v chooses randomly and uniformly an old colour
as its own colour. and

b) creates d edges from v to nodes of the same colour
in Gi−1, chosen with a probability proportional to
the degrees in Gi−1.

It has been shown [31] that the networks generated
by the homophyly/kinship model truthfully reflects many
real networks, including both biological networks and
social networks. We have also demonstrated that the
homophyly/kinship model provides a methodology for
community analyses of networks [31].

B. Fundamental Properties

We call the networks generated by our model homophyly
networks. In this section, we establish some basic properties
of the homophyly networks, which will be frequently used
throughout the paper.

The probabilistic tools and inequalities useful in the proofs
are given in Appendix A.

We use H(n, a, d) to denote the set of networks of n nodes,
constructed from the homophyly model with homophyly
exponent a and average number of edges d . Let G = (V , E) ∈
H(n, a, d) be a network of n nodes generated from our
homophyly model. We use Gt to denote the graph obtained
at the end of time step t of the construction of G, and Ct

to denote the set of seed nodes of Gt . Recall that every
node v ∈ V is associated with a color. The vertices in V
is partitioned naturally as the homochromatic sets, each of
which is a connected set of nodes of the same color. Every
homochromatic set contains a seed node, which is the first



LI AND PAN: STRUCTURAL INFORMATION AND DYNAMICAL COMPLEXITY OF NETWORKS 3315

node of the community. For an edge e = (u, v), we call e
a local edge, if the two endpoints u, v share the same color,
and a global edge, otherwise.

In this subsection, we will prove some basic properties about
the number of seed nodes, the sizes, volumes and the numbers
of global edges of homochromatic sets.

Theorem 48 (Basic properties): Given a ≥ 0, and d ≥ 2,
let G = (V , E) be a graph of n nodes generated from our
homophyly model. Let T1 = loga+1 n and T2 = n

logb n
for

some positive constant b. Then the following properties hold:
(1) With probability 1−o(1), for all t ≥ T1, t

2 loga t ≤ |Ct | ≤
2t

loga t .
(2) For each homochromatic set S, if t > tS ≥ T1, then

the expectation of its size at time step t is �(loga+1 t −
loga+1 tS), where tS is the time step at which the seed
node of S is created.

(3) With probability 1−o(1), every homochromatic set in G
has a size upper bounded by O(loga+1 n).

(4) For each homochromatic set S, if tS ≥ T2, then the
number of global edges in G associated to S, denoted
by gS, satisfies that, for sufficiently large n,

(i) if a > 1, then E(gS) ≤ 5
2 (a + 1)db2(log log n)2;

(ii) if a = 1, then E(gS) ≤ 8db2(log log n)2;
(iii) if 0 < a < 1, then E(gS) ≤ 5db2(log log n)2.

Proof: The proof of Theorem 48 is given in
Appendix B. �

C. Power Law and Holographic Law

In this section, we prove that the degrees of the networks
generated by the homophyly model follows a power law, and
a holographic law. Let G be such a network. We say that a
homochromatic set of G is a natural community or community
of G. We will show that there exists a constant β such that
almost surely, the degrees of a natural community, the degrees
of the induced subgraph of a natural community, and the
degrees of the whole network G, all follow a power law with
power exponent the same constant β.

The networks of the homophyly/kinship model follow the
following new phenomenon:

Definition 49 (Holographic Law): Given a network G =
(V , E), we say that G follows a holographic law, if there
exists a constant β, and a partition P of the vertices of G
satisfying both (i) and (ii) below:

(i) G follows the power law with power exponent β, and
(ii) almost all communities of P follow the power law with

power exponent β.
By Definition 49, the power exponent of the power law

of G is the same as the power exponent of the power law of
an community of G.

Theorem 50 (Power Law and Holographic Law): For
a ≥ 0 and d ≥ 2, let G = (V , E) is a network constructed
from H(n, a, d). Then we have:

(1) For a = 0, the degree of nodes in G follows a power
law distribution.

(2) For a > 0, there exists a constant β satisfying:

(i) The degrees of the induced subgraph of almost all
homochromatic sets follow a power law with power
exponent β.

(ii) The degrees of nodes of almost all homochromatic
sets follow a power law with power exponent β.

(iii) (Power law) Degrees of nodes in G follow a power
law with power exponent β.

By Theorem 48 (3), a natural community is small.
By Theorem 50, a natural community is interpretable by
common attributes of the nodes, the common color here, and
almost all the communities have degree patterns similar to
that of the whole graph, showing a type of self-similarity
of networks. (2) (i), (ii) and (2) (iii) of Theorem 50 explore
a holographic law of the homophyly networks, that the power
exponent of the whole network is contained in a natural
community of the network.

Proof: For (1). If a = 0, then the homophyly model
degenerates to the classic PA model, and the power law degree
distribution with β = 3 can be obtained by the canonical proof
of the PA model [5].

For (2). We prove the following two items together, which
proves (2) (i) and (2) (ii), respectively.
(A) For almost every homochromatic set X , the degree

distribution of the induced subgraph G X follows a power
law, and

(B) For almost every homochromatic set X , the degrees of
nodes in X follow a power law.

(2) (iii) will follow immediately from (B) by observing that
the union of several power law distributions with the same
power exponent is also a power law distribution.

The proofs of (A) and (B) are similar to the canonical
proof of the PA model. Additionally, we will verify that the
contribution of degrees of a community from global edges is
negligible compared with those from its local edges. So the
construction of a homochromatic set basically follows the
classic preferential attachment scheme, and the number of
global edges created by other seed nodes is negligible. We will
realize this idea gradually in the proofs below.

Let T3 = (1 − δ1)n, where δ1 = 1
loga/2 n

. Let X denote
a homochromatic set of a fixed color and tX be the time
step at which X is created. Suppose that T2 ≤ tX ≤ T3.
By Theorem 48, since there are �(n/ loga n) homochromatic
sets in Gn and each of them has size O(loga+1 n) with
extremely high probability, it is easy to show that if b > 2a+1
for T2 = n/ logb n, then almost all homochromatic sets are
created in the time interval (T2, T3) with probability 1− o(1).
So to prove (A) and (B), we only analyze the homochromatic
sets created in this time interval.

For positive integers s and k, define As,k to be the number
of nodes of degree k in X when |X | reaches s, Bs,k the number
of nodes of degree k in the induced subgraph of X when |X |
reaches s, and gs,k the number of global edges associated with
the nodes in X of degree k in the induced subgraph of X when
|X | reaches s. Obviously, we have A1,d = 1, A1,k = 0 for all
k > d , and B1,k = 0 for all k. Then we establish the recurrence
formula for the expectation of both As,k and Bs,k.

Define T (s) to be the time step at which the size of X
becomes to be s, and s′ to be the number of global edges
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connecting X in the case that |X | = s (note that probably at
several consecutive time steps, |X | keeps s). We consider the
time interval (T (s − 1), T (s)).

By Theorem 48, since T1 ≤ T2 ≤ tX ≤ T3, the size of X
at time step n is expected to be E(|X |) = �(loga+1 n −
loga+1 tS) = �

(
loga n · log 1

1−δ1

)
= �(loga/2 n), and the

number of global edges is expected to be O(log log n)2 =
o(E(|X |)). Thus, in the time interval (T (s − 1), T (s)), the
number of global edges that link to a node in X is o(s−1).

For s > 1 and k > d , we have

E(As,k) = As−1,k ·
[

1− kd

2d(s − 1)+ s′
− o

(
1

s

)]

+ As−1,k−1 ·
[

(k − 1)d

2d(s − 1)+ s′
+ o

(
1

s

)]

+ O

(
1

s2

)
,

where the error terms caused by the case that more than one
edge joins to a single node are absorbed in the term O(1/s2).
Taking expectations on both sides, we have

E(As,k) = E(As−1,k) ·
[

1− k

2(s − 1)+ s′/d
− o

(
1

s

)]

+ E(As−1,k−1) ·
[

(k − 1)

2(s − 1)+ s′/d
+ o

(
1

s

)]

+ O

(
1

s2

)
. (59)

When k = d ,

E(As,d) = E(As−1,d) ·
[

1− d

2(s − 1)+ s′/d
+ o

(
1

s

)]

+ 1+ O

(
1

s2

)
. (60)

Similarly, for s > 1 and k > d ,

E(Bs,k) = Bs−1,k − d · (k Bs−1,k + gs−1,k)

2d(s − 1)+ s′

+d · [(k − 1)Bs−1,k−1 + gs−1,k−1]
2d(s − 1)+ s′

+ O

(
1

s2

)
.

Taking expectations on both sides, we have

E(Bs,k) = E(Bs−1,k) ·
[

1− kd

2d(s − 1)+ s′

]

+ E(Bs−1,k−1) · (k − 1)d

2d(s − 1)+ s′

+ E(gs−1,k−1 − gs−1,k)

2d(s − 1)+ s′
+ O

(
1

s2

)
. (61)

When k = d ,

E(Bs,d) = Bs−1,d − d · (d Bs−1,d + gs−1,d)

2d(s − 1)+ s′
+ 1+ O

(
1

s2

)

= Bs−1,d ·
[

1− d

2(s − 1)+ s′/d

]

+
[

1− gs−1,d

2(s − 1)+ s′/d

]
+ O

(
1

s2

)
,

and

E(Bs,d) = E(Bs−1,d) ·
[

1− d

2(s − 1)+ s′/d

]

+
[

1− E(gs−1,d)

2(s − 1)+ s′/d

]
+ O

(
1

s2

)
. (62)

To solve these recurrences, we introduce the following
lemma that is used in the canonical proof of the preferential
attachment model.

Lemma 51 ([16], Lemma 3.1): Suppose that a sequence
{as} satisfies the recurrence relation

as+1 =
(

1− bs

s + s1

)
as + cs for s ≥ s0,

where the sequences {bs}, {cs} satisfy lims→∞ bs = b > 0 and
lims→∞ cs = c respectively. Then the limit of as

s exists and

lim
s→∞

as

s
= c

1+ b
.

Note that since |X | goes to infinity as n → ∞.
By Theorem 48, the terms s′/d in equalities (59) and (60) are
comparatively negligible. Since gs,k, for each k, is expected
to be o(E(|X |)), the terms E(gs−1,k−1−gs−1,k )

2d(s−1)+s ′ and E(gs−1,d )
2d(s−1)+s ′

in equalities (61) and (62) are also comparatively negligible.
By Lemma 51, E(As,k )

s and E(Bs,k)
s must have the same limit

as t goes to infinity. Thus we will only give the proof of
the power law distribution for E(As,k), which also holds
for E(Bs,k).

Denote by Sk = lims→∞ E(As,k )
s for k ≥ d . In the case

of k = d , we apply Lemma 51 with bs = d/2 + o(1),
cs = 1+ O(1/s2), s1 = −1, and get

Sd = lim
s→∞

E(As,d)

s
= 1

1+ d
2

= 2

2 + d
.

For k > d , assume that we already have Sk−1 =
lims→∞ E(As,k−1 )

s . Applying Lemma 51 again with bs = k/2+
o(1), cs = E(As−1,k−1)

s−1 · k−1
2 + O(1/s2), s1 = −1, we get

Sk = lim
s→∞

E(As,k)

s
= Sk−1 · k−1

2

1+ k
2

= Sk−1 · k − 1

k + 2
.

Thus recurrently, we have

Sk = Sd · (d + 2)!(k − 1)!
(d − 1)!(k + 2)! =

2d(d + 1)

k(k + 1)(k + 2)
. (63)

This implies that for sufficiently large s, E(As,k) = f (d)(1+
o(1)) · k−3s for some function f only depending on d . Since
s = ω(1) goes to infinity as n →∞, we have E(As,k) ∝ k−3.
For the same reason, E(Bs,k) ∝ k−3. This proves (A) and (B),
and also completes the proof of (2) (i) and (2) (ii).

For (2) (iii), a key observation is that the union of several
power law distributions is also a power law distribution if
the power exponents are equal. We will give the same explicit
expression of the expectation of the number of degree k nodes
by combining those for the homochromatic sets, leading to
a similar power law distribution.

To prove the power law degree distribution of the whole
graph, we take the union of distributions of all homochromatic
sets. Suppose that G has m homochromatic sets that are
created in time interval (T2, T3). For i = 1, . . . , m, let Mi
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be the size of the i -th homochromatic set and N (i)
s,k denote the

number of nodes of degree k when the i -th set has size s. For
each i , we have

lim
n→∞

E(N (i)
Mi ,k

)

Mi
= Sk .

Hence,

lim
n→∞

E(
∑m

i=1 N (i)
Mi ,k

)
∑m

i=1 Mi
= Sk .

Let M0 denote the size of the union of all other
homochromatic sets and N (0)

s,k denote the number of nodes of
degree k in this union when it has size s. By Theorem 48,
we know that E(M0) = o(n). Since the color of each node
is chosen independently, by the Chernoff bound, M0 = o(n)
holds with probability 1− o(1). Define Nt,k to be the number
of nodes of degree k in Gt . Then we have

lim
n→∞

E(Nn,k )

n
= lim

n→∞
E(
∑m

i=0 N (i)
Mi ,k

)
∑m

i=0 Mi
.

For M0, we have that

lim
n→∞

M0∑m
i=1 Mi

= lim
n→∞

M0

n − M0
= 0

and

lim
n→∞

E(N (0)
M0,k)

n
≤ lim

n→∞
M0

n
= 0

hold with probability 1− o(1). So

lim
n→∞

E(Nn,k)

n
= lim

n→∞
E(
∑m

i=1 N (i)
Mi ,k

)
∑m

i=1 Mi
= Sk .

Recall that Sk = 2d(d+1)
k(k+1)(k+2) . This implies that for sufficiently

large n, E(Nn,k ) = f (d)(1+o(1)) ·k−3n for some function f
only depending on d , and so E(Nn,k) ∝ k−3. (2) (iii) follows.

This completes the proof of Theorem 50. �

D. Small Diameter Property

In this section, we show that the diameters of the networks
generated from the homophyly model are small.

Theorem 52 (Small Diameter Property): For a ≥ 0, let
G = (V , E) be a graph generated from H(n, a, d). Then the
following properties hold:

(1) For a = 0, with probability 1− o(1), the diameter of G
is O(log n).

(2) For a > 0, with probability 1− o(1), the diameter of G
is O(loga+2 n).

We remark that the small world phenomenon consists of
two properties, the first is the small diameter property, and
the second is the clustering effect. Our theorem shows the
first. For the second property, it is easy to see that if we add
some local rules in the creation of local edges, i.e., the edges
between nodes of the same color, then the clustering effect
will be significantly amplified. It is important that this kind
of modifications will never change all the other properties of
the graphs. The idea of introducing local rules in creation

of local edges here is interesting. It has been a hard open
problem to combine the two properties of the small world
phenomenon in modeling, as commented by Chung and Lu
in [16]. To our knowledge, the only known theoretical results
are on grid-like graphs by Kleinberg [25], leading to local
algorithms for finding short paths. It would be an interesting
problem to better fit our model by introducing some local
rules to generate graphs with both small diameter property
and the clustering effect and to allow local algorithms for
communications in the graphs.

Now we turn to prove Theorem 52.
Proof: For (1). When a = 0, the homophyly

model is the classic PA model, and the diameter has
been proved to be O(log n) with probability 1 − o(1) by
Bollobás and Riordan [9].

For (2). Let a > 0 and G be a graph in H(n, a, d).
We consider the hierarchical structure of G. Let G′ be the
graph obtained from G by merging all non-seed nodes of each
homochromatic set to the corresponding seed node. Hence the
nodes of G′ are the seed nodes of G, and the edges of G′ are
the global edges of G. Let G′′ be the graph obtained from G
by deleting all global edges. In so doing, G′′ consists of the
isolated homochromatic sets.

Given two nodes u and v in G, suppose that u0 and
v0 are the seed nodes of colors as the same as that of u
and v respectively. By definition, u0 and v0 are nodes in G′.
We choose a path Pu,v connecting two nodes u, v in G as
follows. We consider two cases.

Case 1: u and v share the same color.
Let X be the homochromatic set of u. In this case, we define

Pu,v to be the shortest path between u and v in the induced
subgraph of the natural community X .

Case 2: Otherwise. Then
Suppose that u0, u1, · · · , ul = v0 is a shortest path in G′,

where each ui is a seed node of G. For each i , let Xi be the
set of nodes sharing the same color as that of ui .

Let Pu,u0 and Pv0,v be the shortest paths between u and u0
in X0, and between v0 and v in Xl , respectively. For every i
with 0 ≤ i < l, let Pui ,ui+1 be the path consisting of a shortest
path in Xi , a shortest path in Xi+1 and an edge between Xi and
Xi+1. We define Pu,v to be the path consisting the paths Pu,u0 ,
Pu0,u1 , · · · , Pul−1,ul , pul ,v . By definition, there are l edges in
G′ are used in the path Pu,v and Pu,v consists alternately of
paths composed by local and global edges..

To estimate the number l, we recall a known result on
random recursive trees. A random recursive tree is constructed
by stages. At each stage, a new vertex is created which links
to an earlier node randomly. If each node is picked uniformly,
then we call it a uniform recursive tree. We use a result of
Pittel in [43], saying that the height of a uniform recursive
tree of size n is O(log n) with high probability.

Lemma 53 (Recursive Tree Lemma [43]): With probability
1 − o(1), the height of a uniform recursive tree of size n is
asymptotic to e log n, where e is the natural logarithm.

Consider G′ as a union of d recursive trees. Notice that the
earlier created homochromatic sets in G have larger expected
volumes than that of the communities created later. So with
higher probability than the uniform recursive tree, the height
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of a recursive tree in G′ is at most e log |Cn |, where |Cn | is the
number of colors in G and is also the number of nodes in G′.
This means that with probability 1− o(1), the diameter of G′
is an upper bounded by 2e log |Cn | = O(log n). Therefore the
number l in the definition of Pu,v is at most O(log n).

On the other hand, by Theorem 48, with probab-
ility 1 − o(1), every homochromatic set has a size upper
bounded by O(loga+1 n). Hence, for every i , the length of
Pui ,ui+1 is at most O(loga+1 n).

Therefore, with probability 1− o(1), the diameter of G is
upper bounded by O(loga+1 n) · O(log n) = O(loga+2 n). (2)
follows.

This completes the proof of Theorem 52. �
Since the diameter of a PA network is expected to be

logarithmic of its size, the diameter of each homochromatic set
is expected to be O(log log n). This implies that the expected
diameter of a homophyly network is O(log n log log n).

However, for concentration probability, our result in
Theorem 52 is only a rough upper bound O(loga+2 n) for the
diameter. It is an interesting open question to prove or disprove
the concentration result of diameter O(log n log log n) for the
homophyly networks.

Generally speaking, there are interesting problems left open
by our model. The first is to modify the model to generate
networks with both small diameter property and clustering
effect simultaneously. The second is to develop a theoretical
approach to algorithmic small world phenomenon, for which
it would be very interesting to design algorithms to find short
paths on networks of small diameters in time complexity
polynomial of the diameters.

E. Structure Conductance, and Conductance
Minimization Principle

1) Structure Conductance of Networks: Given a graph
G = (V , E), and a subset S of V , the conductance of S in G
is given by

�(S) = |E(S, S̄)|
min{vol(S), vol(S̄)} , (64)

where E(S, S̄) is the set of edges with one endpoint in S
and the other in the complement of S, i.e. S̄, and vol(X) is
the sum of degrees dx for all x ∈ X . The conductance of G
is defined to be the minimum of �(S) over all subsets S’s,
that is,

�(G) = min
S⊂V
{�(S)}. (65)

Then we extend the definition of conductance of a set to
a class of sets.

Definition 54 (Structure Conductance by a Partition):
Let G be a graph, and P = {X1, X2, · · · , X L} be a partition
of vertices of G such that vol(Xi ) ≤ vol(G)/2 = m for
each i . Then we define the structure conductance of G by
P as follows.

θP (G) = 1

n

L∑

j=1

|X j | ·�(X j ). (66)

θP (G) is in fact the weighted average of conductance for
each module of partition P .

Definition 55 (Structure Conductance): Given a graph G,
we define the structure conductance of G by

θ(G) = min
P
{θP(G)}. (67)

The motivations of the structure conductance of a network
are:

• Intuitively speaking, if a set X ⊂ V has a small
conductance, then the internal links of X are strong, and
the external links of X are weak. This exactly captures
the common convention of quality communities.

• By definition, if θ(G) is small, then there is
a well-defined community structure P in G. It is clear that
a good community structure indicated by low structure
conductance requires a mass of nodes belonging to
high-quality communities.

2) Structure Conductance Principle of Nature Evolving:
In this subsection, we investigate the structure conductance of
the networks generated by the homophyly model with different
values of the homophyly exponent a.

We will establish a phase transition theorem of structure
conductance and the structure conductance minimization
principle of the existence of well-defined structures of power
law networks. Precisely, we have:

Theorem 56 (Phase Transition of Structure Conductance,
and Conductance Minimization Principle): For a ≥ 0, d ≥ 2,
let G = (V , E) be a graph generated from H(n, a, d).
We have

(1) If a = 0, then there exists a positive constant α
depending only on d such that, with probability 1−o(1),
θ(G) ≥ α.

(2) If 0 < a ≤ 1, then for almost every homochromatic set
S, the expected conductance of S is O

(
(log log n)2

loga/2 n

)
, and

E(θ(G)) = o(1).
(3) If a > 1, then for β = a−1

4(a+1) , with probability
1 − o(1), for almost every homochromatic set S, the
conductance of S, �(S) = O

(
1
|S|β
)

. Moreover, with
probability 1− o(1), θ(G) = o(1).

Theorem 56 implies that the structure conductance of
networks generated by the homophyly model decreases as a
increases. Furthermore, the structure conductance of the
networks decreases in three interesting ways. The results for
a = 0 and a > 1 hold almost surely, and go to the opposite
extremes. However for 0 < a ≤ 1, we are just able to prove
the expectation result that, the expected structure conductance
of network G is o(1). Although the result also implies that
even if 0 < a ≤ 1, with high probability, the structure
conductance of the networks generated by the homophyly
model is as small as o(1), it could be possible that, with
a non-negligible probability, the structure conductances of
some networks of the model are larger than some constant
α > 0. It is interesting to prove or disprove the concentration
result of the structure conductance for the case of 0 < a ≤ 1.
Here we leave it as an open question.
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Nevertheless the results in Theorem 56 demonstrate
that structure conductance minimization is a principle
of the existence of community structures of power law
networks.

Proof of Theorem 56: For (1). If a = 0, then the homophyly
model degenerates to the PA model. It has been shown that,
with probability 1−o(1), networks generated by the PA model
are expanders, whose structure conductances has been proved
to be at least a constant α depending on d ([38, Th. 1]). Since
for any partition P of V , θP (G) is the weighted average over
all modules of P and θP (G) ≥ α. This implies that θ(G) ≥ α.

For (2). Recall that in Section XIV-C, we have shown that if
T2 ≤ tS ≤ T3, where T2 = n

logb n
, b > 2a+ 1, T3 = (1− δ1)n,

δ1 = 1
loga/2 n

, then with probability 1 − o(1), almost all the
homochromatic sets are created in the time interval (T2, T3).
So we only have to show that every such homochromatic set,
denoted by S, has expected conductance O

(
(log log n)2

loga/2 n

)
.

Let 0 < a ≤ 1. By Theorem 48, if tS ≥ T2, then the
expected number of global edges E(gS) = O(log log n)2. On
the other hand, if tS ≤ T3, then the size of S is expected to be
E(|S|) = �(loga+1 n − loga+1 tS) = �

(
loga n · log 1

1−δ1

)
=

�(loga/2 n), and the expected volume of S is also �(loga/2 n).
By the Chernoff bound, the results above hold with probability
1− o(1). Hence, E(�(S)) = O

(
(log log n)2

loga/2 n

)
.

To show that E(θ(G)) = o(1), we only have to show that
in the case of a specific partition P1 in G, θP1(G) = o(1).
We define P1 by colors such that each homochromatic set S
satisfying T2 ≤ tS ≤ T3 is a module of P1 and the rest
nodes form the last module of P1. Since b > 2a + 1 and
each homochromatic set has an expected size O(loga+1 n),
the size of the last module of P1 is expected to be at most
O(loga+1 n) · T2 + δ1n = o(n). Thus

E(θ(G)) ≤ E(θP1(G))

= O

(
(log log n)2

loga/2 n

)
· (1− o(1))+ o(1) = o(1).

For (3). Assume a > 1. Let T4 = (1 − δ2)n, where δ2 =
1

log(a−1)/2 n. By a similar argument to that for (2) above, we
have that for b = a + 2, almost all the homochromatic sets
are created in the time interval (T2, T4). We will show that,
with probability 1 − o(1), every homochromatic set S with
T2 ≤ tS ≤ T4 has conductance O

(
1
|S|β
)

.
By the proof of Theorem 48, we can establish an upper

bound for the volume of S. We will show a concentration
result for the event that the volume of S is O(loga+1 n).

Recall that D(S)[t] is the volume of S at time step t .
We have:

Lemma 57 (Degree of Communities Lemma): With
probability 1− o(1), for any homochromatic set S created at
time tS ≥ T2, D(S)[n] = O(loga+1 n) holds.

Proof: We only have to show that for a fixed S with tS ≥
T2, D(S)[n] = O(loga+1 n) holds with probability 1−o(n−1).
Then the lemma follows from the union bound. We assume
the worst case that S is created at time step tS = T2. In the
proof of Theorem 48, we know that the recurrence on D(S)[t]

can be written as

E(D(S)[t] | D(S)[t − 1], E)

= D(S)[t − 1] + 1

loga t
· D(S)[t − 1]

2d(t − 1)
· d

+
(

1− 1

loga t

)
· 2d

|Ct−1| ,

and thus

E(D(S)[t] | D(S)[t − 1], E)

≤ D(S)[t − 1]
[

1+ 1

2(t − 1) loga t

]
+ 4d loga t

t
.

These are the Inequalities (77) and (78), respectively. Applying
Inequality (80) to (78), we have

E(D(S)[t] | D(S)[t − 1], E)− 9d loga+1(t + 1)

≤
[

1+ 1

2(t − 1) loga t

]
· (D(S)[t − 1] − 9d loga+1 t).

Recall that

θt =
t∏

i=tS+1

[
1+ 1

2(i − 1) loga i

]
.

Define X[t] = D(S)[t ]−9d loga+1(t+1)
θt

. Then

E[X[t] | X[t − 1], E] ≤ X[t − 1].
Note that

X[t] − E[X[t] | X[t − 1], E]
= D(S)[t] − E[D(S)[t] | D(S)[t − 1], E]

θt
≤ 2d.

Since

D(S)[t] − D(S)[t − 1] ≤ 2d,

we have, for sufficiently large n (and so sufficiently large t),

Var[X[t] | X[t − 1], E]
= E[(X[t] − E(X[t]|X[t − 1], E))2]
= 1

θ2
t

E[(D(S)[t] − E(D(S)[t] | D(S)[t − 1], E))2]

≤ 1

θ2
t

E[(D(S)[t] − D(S)[t − 1])2|D(S)[t − 1], E]

≤ 2d

θ2
t

E[D(S)[t] − D(S)[t − 1] | D(S)[t − 1], E]

≤ 2d

θ2
t

[
4d loga t

t
+ D(S)[t − 1]

2(t − 1) loga t

]

= 8d2 loga t

tθ2
t
+ d

(t − 1)θt loga t
· D(S)[t − 1]

θt

≤ 8d2 loga t

tθ2
t
+ 9d2 loga+1 t

(t − 1)θ2
t loga t

+ d X[t − 1]
(t − 1)θt loga t

≤ 10d2 loga t

tθ2
t

+ d X[t − 1]
(t − 1)θt loga t

.
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Since θt can be bounded as

θt ∼ exp

⎧
⎨

⎩

t∑

i=T2+1

1

2(i − 1) loga i

⎫
⎬

⎭

∈
[(

t

T2

) 1
2 loga n

,

(
t

T2

) 1
2 loga T2

]
,

we have

t∑

i=T2+1

10d2 loga i

iθ2
i

≤ 10d2 loga n
∫ t

T2

1

x
·
(

T2

x

) 1
loga n

dx

≤ 10d2 loga n · log n = 10d2 loga+1 n,

and

t∑

i=T2+1

1

(i − 1)θi loga i

≤ 2

loga T2

∫ t

T2

T
1

2 log n
2

x · x 1
2 log n

dx

≤ 2 log n

loga T2
.

Here we can assume that X[t] is non-negative, which means
that D(S)[t] ≥ 10 loga+1(t + 1), because otherwise, D(S)[n]
will be smaller and the event in the lemma holds with higher
probability. Let λ = 20 loga+1 n. By Lemma 71,

Pr[X[t] = ω(loga+1 n)] ≤ Pr[X[t] ≥ X[T2] + λ]
≤ exp

{
− λ2

2(10d2 loga+1 n + (2 log n/ loga T2)λ+ dλ/3)

}

+ O(n−2) = O(n−2).

This implies that D(S)[n] = O(loga+1 n) holds with
probability 1− O(n−2). �

Then we consider the number of global edges associated
with S with T2 ≤ tS ≤ T4. Suppose the event, denoted by F ,
that for any t ≥ tS , D(S)[t] = O(loga+1 n), which holds
with probability 1−o(n−1) by the proof Lemma 57. For each
t ≥ tS , we define a random variable Xt to be the number of
global edges that connect S at time t . We have

E(Xt |F) = d · 1

loga t
· D(S)[t − 1]

2d(t − 1)
≤ log1+ε n

2(t − 1)
,

for arbitrarily small positive ε. Then

E

(
n∑

t=tS

Xt |F
)

≤
(

log1+ε n
)
·

n∑

t=tS

1

2(t − 1)

≤ a(log1+ε n)(log log n).

By the Chernoff bound (conditioned on the event F ), for
sufficiently large n,

Pr

[
n∑

t=tS

Xt ≥ 2a(log1+ε n)(log log n)|F
]
≤ n−2.

That is, conditioned on the event F , with probability at least
1− n−2, the total number of global edges joining S is upper
bounded by 2a(log1+ε n)(log log n). Since F happens with
probability 1− o(n−1), we have

Pr

[
n∑

t=tS

Xt ≥ 2a(log1+ε n)(log log n)

]
= o(n−1).

On the other hand, it is easy to show that when a > 1, with
probability 1 − o(1), every such S (satisfying tS ∈ [T2, T4])
has a size �(log

a+1
2 n), and so a volume �(log

a+1
2 n). Let

0 < ε < a−1
4 . Then, with probability 1−o(1), for each such S,

�(S) = O

(
2a(log1+ε n)(log log n)

log(a+1)/2 n

)

≤ O
(

log−
a−1

4 n
)

≤ O
(
|S|− a−1

4(a+1)

)
.

To show that θ(G) = o(1) holds with probability 1−o(1), as
we have done in the proof of (2), we define a partition P2 and
show that θP2(G) = o(1) with high probability. We define P2
such that each homochromatic set S satisfying T2 ≤ tS ≤ T4 is
a module of P2 and the rest nodes form the last module of P2.
In fact, by Lemma 57, with probability 1 − o(1), the total
number of nodes belonging to the homochromatic sets which
appear before time T2 or after T4, that is the size of the last
module of P2, is at most O(loga+1 n) · n

loga+2 n
+ n

log(a−1)/2 n
=

o(n) for constant a > 1. Therefore, 1 − o(1) fraction of
nodes of G belongs to a homochromatic set S of conductance

bounded by O
(
|S|− a−1

4(a+1)

)
= o(1). Thus with probability

1− o(1),

θ(G) ≤ θP2(G) = o(1)(1− o(1))+ o(1) = o(1).

This completes the proof of Theorem 56. �
The results and proofs of Theorem 56 imply that if a = 0,

then almost surely the networks of the homophyly model
simply fail to have conductance-based community structure,
that if 0 < a ≤ 1, then the networks of the homophyly model
may have a conductance-based community structure, but the
conductance-based community structures are non-robust, and
that if a > 1, then almost surely, the networks of the
homophyly model have a well-defined conductance-based
community structure.

It is interesting to notice that Theorem 56 (1) and (3)
hold with probability 1 − o(1), but Theorem 56 (2) is only
an expectation result. This leads to some interesting open
questions: Whether or not the result in Theorem 56 (2)
can be strengthened to a concentration result? Is structure
conductance a robust measure for characterizing the structures
or complexity of networks?
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According to Theorem 56, structure conductance of the
networks of the homophyly/kinship model has three types
corresponding to a = 0, 0 < a ≤ 1 and a > 1, respectively.

F. Modularity Principle of Nature Evolving

In this subsection, we will investigate modularity of
networks. Firstly, we establish an upper bound of modularity
for general graphs. Secondly, we establish a phase transition
phenomenon of modularity of power law networks, and
the modularity maximization principle of the existence of
well-defined structures of power law networks.

In this subsection, we investigate the power law networks
generated by our homophyly model. Precisely, for the
homophyly networks, we have the following theorem.

Theorem 58 (Modularity Maximization Principle): Let G =
(V , E) be a graph of n nodes generated from the homophyly
model with homophyly exponent a ≥ 0, and average number
of edges d. Then we have

(1) If a = 0, then there exists a large constant α such that

Pr[σ(G) ≤ 1− α] = 1− o(1).

(2) If a > 0, then

Pr[σ(G) = 1− o(1)] = 1− o(1).

By the definition of modularity, we can intuitively interpret
the modularity of a graph G, σ(G), as the distance between G
and a random copy of G. By this reason, for a graph G, if
σ(G) is large, then G is far from its own random copy, and
if σ(G) is small, then G is close to its own random copy. In
addition, we always assume that a random copy of a graph
fails to have a well-defined structure.

Therefore, the principle explored in Theorem 58 implies
that if a = 0, then the modularity of G, i.e., σ(G), is almost
surely small, so that G is close to its own random copy, or
simply, we say that G is random, and that if a > 0, then
the modularity of the networks of the homophyly model are
almost surely far from their own random copies, meaning that
the networks have well-defined structures.

It is remarkable that the results in both cases hold with
certainty, i.e., almost surely, or with probability 1 − o(1).
This feature is different from that of structure conductance in
Theorem 56, showing some differences between modularity
and structure conductance. This suggests that modularity
maximization is a principle behind the existence of community
structures of networks, and that modularity is a robust
measure for characterizing the community structures of
networks.

Now we turn to prove the theorem.
Proof of Theorem 58: For (1). In this case, the homophyly

model is equivalent to the PA model, therefore, with
probability 1−o(1), the conductance of G, �(G) is a constant
α > 0. Then the result follows from Theorem 24.

For (2). By definition, σ(G) is the maximum σP (G) over
all partitions P’s. So it suffices to give a specific partition P
such that E(σP (G)) = 1− o(1).

Let P be the partition of G defined by colors such that
each homochromatic set is a module of P . Suppose that

P = {X1, X2, · · · , X L}. For each l ∈ {1, 2, · · · , L}, let kl

be the number of edges whose endpoints are both in Xl , Vl

be the volume of Xl , and gl be the number of edges from Xl

to nodes outside of Xl .
By Theorem 48, we have that with probability 1 − o(1),

there are L = |Cn| ≤ 2n
loga n homochromatic sets in G, and

that with probability 1−o(1), the number of global edges, the
edges between different modules, is d · |Cn | ≤ 2dn

loga n = o(n).
Thus

Pr

[
m −

L∑

l=1

kl = d · |Cn | = o(n)

]
= 1− o(1).

By the construction of G, m = dn, we thus have

Pr

[
L∑

l=1

kl = (1− o(1))m

]
= 1− o(1) (68)

By Theorem 48 again, we have that with probability 1−o(1),
each homochromatic set has a size upper bounded by
O(loga+1 n).

Let Vmax = max{V1, . . . , VL}. Since the total number of
global edges is o(n), we have that with probability 1− o(1),
the following holds

Pr[Vmax = o(m)] = 1− o(1).

Thus

Pr

[
L∑

l=1

V 2
l ≤ Vmax ·

L∑

l=1

Vl = o(m2)

]
= 1− o(1) (69)

Combining Inequality (68) and (69), we have that

σ(G) ≥ σP (G) = 1

m

L∑

l=1

kl − 1

4m2

L∑

l=1

V 2
l = 1− o(1)

holds with probability 1− o(1).
This completes the proof of Theorem 58. �
Theorem 58 demonstrates that 0 is a threshold of a for

modularity of the homophyly networks, which is either almost
surely low in the case of a = 0, or almost surely as high as
1− o(1) for the case of a > 0, and that the modularity results
for both a = 0 and a > 0 are concentration results, which
hold with probability 1− o(1).

According to Theorem 58, modularity fails to distinct the
networks of the homophyly/kinship model for different affinity
exponents a > 0.

G. Structural Information Principle of Nature Evolving

In this section, we will investigate the positioning entropy,
structural information and normalized structural information
of networks. Our contributions are as follows:
• To establish a lower bound of the positioning entropy for

general power law networks
• To establish an equation between positioning entropy

and structural information of a general graph through
conductances of the partition

• To establish a lower bound of normalized structural
information for general graphs
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• To establish a lower bound of structural information for
general graphs

• To establish a structural information phase transition
phenomenon and structural information minimization
principle for the power law networks generated by our
homophyly model.

At first, we propose an additive law of entropy function,
and establish a difference principle of positioning entropy
and structural information, a normalized structural information
principle, and a structural information principle for general
graphs.

1) Phase Transition of Structural Information, and
Structural Information Minimization Principle of Homophyly
Networks: For the homophyly networks, we have the
following theorems.

Theorem 59 (Phase Transition, and Structural Information
Minimization Principle): Given a ≥ 0, and d ≥ 2, let
G = (V , E) be a graph generated from H(n, a, d) and N
be the partition of G given by the natural communities of G.
Then with probability 1−o(1), the two-dimensional structural
information of G, satisfies the following:

(1) If a = 0, then H2(G) = �(log n).
(2) If 0 < a < 1, then HN (G) = �(log1−a n)1

(3) If a ≥ 1, then H2(G) = �(log log n).
Theorem 59 implies that the structural information of the

networks of the homophyly model with a = 0 are at least
c · log n for some constant c > 0, that if 0 < a < 1, then
structural information of the networks of the homophyly model
is at most c · log1−a n for some constant c > 0, and that if
a ≥ 1, then the structural information of the networks of the
homophyly model is at most c · log log n for some constant c.
The results demonstrate that structural information of the
networks of the homophyly model dramatically decreases as
a increases, and that each of the results holds almost certainly.
The theorem thus implies that structural information is a robust
and well-defined measure to characterize the structures and
complexity of complex networks.

Theorem 59 also indicates two thresholds 0 and 1 for the
homophyly exponent a. (1) and (2) of the theorem show that
if a = 0, then the structural information of the homophyly
graphs is extremely high, and that if a > 0, then the
structural information of the homophyly networks is close to 0.
(2) and (3) show that if a ≥ 1, then the structural information
of the networks of the homophyly model is exponentially
smaller than that of the networks with a < 1.

Theorem 59 demonstrates that nature evolving may have
structure entropies in three classes: (i) at least c log n for some
constant c, (ii) equal to c log1−a n for some constant c and
some affinity exponent a < 1, and (iii) equal to c log log n for
some constant c.

Theorem 60 (Phase Transition and Normalized Structural
Information Minimization Principle): Given a ≥ 0, and
d ≥ 2, let G = (V , E) be a graph generated from H(n, a, d).
We have the following

1It is an interesting open question to characterise exactly for 0 <
a < 1, the two-dimensional structural information of the networks of the
homophyly/kinshio model.

(1) If a = 0, then

Pr[τ (G) ≥ α] = 1− o(1),

where α is the constant defined in Theorem 56.
(2) If 0 < a < 1, then

Pr

[
τ (G) = O

(
1

loga n

)]
= 1− o(1).

(3) If a ≥ 1, then

Pr

[
τ (G) = O

(
log log n

log n

)]
= 1− o(1).

Proof of Theorem 60: By combining Theorems 27
and 59. �

Theorem 60 exactly reflects the results in Theorem 59 in
a normalized form.

By Theorems 27, 59 and 60, we have that the structural
information and normalized structural information of networks
of the homophyly model decrease as a increases, for
which 0 and 1 are the thresholds for dramatic decrease of
the entropies, and that structural information minimization
and normalized structural information minimization are the
principles of the existence of well-defined structures of
networks, and the principles of power law networks from high
positioning entropy to low positioning entropy.

Now we are ready to prove Theorem 59.
Proof of Theorem 59: Let G be a homophyly network. Let

N be the partition of G given by the natural communities
of G.

For (1). By Theorem 27, for any partition P of G, HP (G) ≥
�(G) · H1(G). Since a = 0, G is actually generated by the
PA model, so that with probability 1− o(1), the conductance
�(G) of G is a constant α > 0. By Theorem IX-B, with
probability 1 − o(1), the positioning entropy H1(G) of G is
at least c log n for some constant c > 0. (1) follows.

For (2) and (3). For upper bounds proofs, it suffices to give
a partition of the graph G with the desired properties. Let
N be the natural partition of G given by the homochromatic
sets of G. Then we build an upper bound for HN (G).

By Theorem 25, we have that for a partition P of V ,

HN (G) = −
L∑

j=1

Vj

2m

n j∑

i=1

d( j )
i

V j
log2

d( j )
i

V j
−

L∑

j=1

g j

2m
log2

Vj

2m
.

Set the first term of HN (G) by H1 =
−

L∑
j=1

Vj
2m

n j∑
i=1

d( j)
i
V j

log2
d( j)

i
V j

, and for each homochromatic

set X j , set L j = −
n j∑

i=1

d( j)
i
V j
· log2

d( j)
i
V j

. By Theorem 48, with

probability 1 − o(1), for each j , n j = O(loga+1 n). Since
uniform distribution gives rise to the maximum entropy, we
have that with probability 1− o(1),

L j ≤ log2 n j = O(log log n),

and by averaging, we have

H1 =
L∑

j=1

Vj

2m
· L j = O(log log n).
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Moreover, recall that by Lemma 57, with
probability 1 − o(1), almost all nodes belongs to some
homochromatic set of volume O(loga+1 n) (those created
after T2). We have

−
L∑

j=1

g j

2m
log2

Vj

2m
= �

⎛

⎝
L∑

j=1

g j

m
log2 m

⎞

⎠

= �

⎛

⎝ log2 m

m
·

L∑

j=1

g j

⎞

⎠.

Let mg be the number of global edges in G. Then∑L
j=1 g j = 2mg .

By the construction of G, mg = d|Cn|, where |Cn| is the
number of colors in G (and also the number of homochromatic
sets in G and the number of modules in P). By Theorem 48,
with probability 1 − o(1), the size |Cn | of Cn is at most
2n/ loga n and at least n/2 loga n. Therefore, noting that
m = dn, the second term of HN (G) satisfies

−
L∑

j=1

g j

2m
log2

Vj

2m
= �

(
log2 m

m
· n

loga n

)
= �(log1−a n).

Putting all together, we have that, with probability 1−o(1),

HN (G) = H1 −
L∑

j=1

g j

2m
log2

Vj

2m

= O(log log n)+�(log1−a n).

If 0 < a < 1, then with probability 1− o(1),

HN (G) = �(log1−a n).

If a ≥ 1, then with probability 1− o(1),

HN (G) = O(log log n).

By Theorem 32, this gives rise to

H2(G) = �(log log n).

Both (2) and (3) follow.
This completes the proof of Theorem 59.
According to Theorem 59, the two-dimensional structural

information function of the networks of the networks of the
homophyly/kinship model are classified as the following types:

1) �(log n);
2) �(log1−a n) for a with 0 < a < 1; and
3) �(log log n).

Therefore, the two-dimensional structural information
characterises the networks naturally evolving in nature and
society by three types with varying affinity exponent a and
hidden constant in the � of the complexity functions above.

So far, we considered the structural information for balanced
graphs. However, what happens for highly unbalanced graphs?
We will see that there will be a black hole in such networks.

XV. BLACK HOLE PRINCIPLE

A well-known feature of the Shannon entropy function
H (p) is that, loosely speaking, the more the distribution p
looks like a uniform one, the larger H (p) is. A skewed
distribution often exhibits a low entropy. In the proofs of
our results on lower bounds, the conditions of “simple
graphs” and “graphs with balanced weights” guarantee that
the degrees of nodes and volumes of any small subset do
not diverge too much, and so the lower bounds can be
proved. The positioning entropy and structural information
do not depend on the absolute values of degrees, but on
the relative ones, i.e., dv/vol(G) and ρ j = vol(Vj )/vol(G).
Conversely, if the degrees of nodes in a complex graph with
a large amount of multi-edges or unbalanced weights skew the
degree distribution severely, then both positioning entropy and
structural information may diminish dramatically.

Theorem 61 (Black Hole Theorem - Necessity): Let G =
(V , E) be a connected weighted graph of size n = |V | and
weight function w : E → R

+.
(1) If there is a subset S ⊆ V of size s and volume vol(S) =

ρ · vol(G) for some 0 < ρ ≤ 1, then both positioning
entropy H1(G) and structural information H2(G) of G
are at most

H (1− ρ, ρ)+ (1− ρ) log2(n − s)+ ρ log2 s.

(2) If s = logo(1) n and ρ ≥ 1− 1
log n , then

yH2(G) ≤ H1(G) = o(log log n).

Proof: For (1). The proof is quite straightforward from
the additivity of positioning entropy given by Lemma 29.
Partition V into two subsets: V = S ∪ S. Noting that the
positioning entropy in each subset is at most the logarithm
base 2 of its size, we have

H1(G) ≤ vol(S)

vol(G)
log2 |S| +

vol(S)

vol(G)
log2 |S| + H (1− ρ, ρ)

= H (1− ρ, ρ)+ (1− ρ) log2(n − s)+ ρ log2 s.

For (2). This follows from (1) and Proposition 23.
Then Theorem 61 follows. �
The result follows from the fact that the small subset S

absorbs almost all probability for a random walk on G.
Once a random walk goes into S, it is hard to escape. This
phenomenon is quite similar to the black holes in astronomy.
We also call a black hole of a network, which means that
a highly dense subset makes the positioning entropy and
structural information break the lower bounds �(log n) and
�(log log n), respectively, for simple and balanced weight
graphs.

Therefore, a black hole in a network makes the entropies
decreasing dramatically.

Theorem 62 (Black Hole Theorem - Sufficiency): Let G =
(V , E) be a connected graph of size n = |V | and volume
vol(G). If H2(G) = o(log log n), then we have the following
conclusions.

(1) If H1(G) = o(log n), then there is a subset S ⊆ V in G
whose size is no(1) and whose volume is (1 − o(1)) ·
vol(G).
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(2) Otherwise, there is a subset S ⊆ V in G whose volume
is vol(S) ≥ ρ · vol(G) for some constant 0 < ρ < 1,
and each node in S belongs to a subset of size logo(1) n
and conductance o(1) (understood as a black hole, that
is, S is composed by black holes). For the complement
S of S, either its volume is o(vol(G)), in which case, the
complement of S consists of only “tiny dusts” and it is
trivial, or there is a subset U ⊆ S with size |U | = no(1),
volume vol(U) = (1 − o(1)) · vol(S) and conductance
�(U) = o(1), in which case, U corresponds to a black
hole.

Proof: First, we consider the case that H1(G) = o(log n).
That is, for any constant ε > 0 and sufficiently large n,
H1(G) ≤ ε2 log2 n. Let

S = {v ∈ V : dv

vol(G)
≥ 1

nε
},

and S = V \ I . So we have that
∑

v∈S

dv

vol(G)
· (ε log2 n) ≤ H1(G) ≤ ε2 log2 n.

Thus,
∑

v∈S

dv

vol(G)
≤ ε,

and
∑

v∈S

dv

vol(G)
≥ 1− ε.

On the other hand, the size of S satisfies

|S| ≤ vol(G)

min
v∈S
{dv} ≤ nε.

Because of the arbitrariness of ε, (1) has been proved.
Then we consider the case that H2(G) = o(log log n) but

H1(G) = �(log n). That is, for any constant ε > 0 and
sufficiently large n, H2(G) ≤ ε3 log2 log2 n, and meanwhile,
there exists a constant ε0 > 0 such that for sufficiently large n,
H1(G) ≥ ε0 log2 n.

Let P be a partition of nodes in G such that HP (G) ≤
ε3 log2 log2 n. Define

J = { j ∈ P : H j ≤ ε2 log2 log2 n},
and J = P \ J , where H j = − ∑

v∈Vj

dv
vol(Vj )

log2
dv

vol(Vj )
and Vj

is the j -th module of P . Since
∑

j∈P

vol(Vj )

vol(G)
· H j ≤ HP (G) ≤ ε3 log2 log2 n,

we have
∑

j∈J

vol(Vj )

vol(G)
· ε2 log2 log2 n ≤

∑

j∈J

vol(Vj )

vol(G)
· H j

≤ ε3 log2 log2 n.

So
∑

j∈J

vol(Vj )

vol(G)
≤ ε,

and
∑

j∈J

vol(Vj )

vol(G)
≥ 1− ε,

which means that almost all volume of G is contributed by
the modules in J .

Define vol(J ) =∑ j∈J vol(Vj ). By the additivity of entropy
function H (·),

H1(G) = H

(
vol(J )

vol(G)
,

vol(J )

vol(G)

)

+ vol(J )

vol(G)
·H1(J )

+ vol(J)

vol(G)
·H1(J )

≥ ε0 log2 n,

where H1(J ) and H1(J) are the entropy of nodes in Vj ( j ∈ J )
and that in Vj ( j ∈ J ), respectively. Since vol(J) ≤ ε · vol(G)
and H1(J) ≤ log2 n which is a trivial upper bound, there must
be a constant ε1 > 0 such that, for sufficiently large n,

H1(J ) = −
∑

j∈J

vol(Vj )

vol(J )
· H j −

∑

j∈J

vol(Vj )

vol(J )
log2

vol(Vj )

vol(J )

≥ ε1 log2 n.

Note that (1−ε) ·vol(G) ≤ vol(J ) ≤ vol(G). Thus there must
be a constant ε2 > 0 such that, for sufficiently large n,

−
∑

j∈J

vol(Vj )

vol(G)
· H j −

∑

j∈J

vol(Vj )

vol(G)
log2

vol(Vj )

vol(G)
≥ ε2 log2 n.

Let 0 < δ < 1 be an arbitrary constant, and φ = 1/ logδ n.
Define

A = { j ∈ J : � j ≤ φ},
and

B = J \ A = { j ∈ J : � j > φ}.
Let vol(A) = ∑ j∈A vol(Vj ) and vol(B) = ∑ j∈B vol(Vj ).
Assume that almost all volumes of modules in J are
contributed by those in B . Then for the same reason as above,
there must be a constant ε3 > 0 such that

−
∑

j∈B

vol(Vj )

vol(G)
· H j −

∑

j∈B

vol(Vj )

vol(G)
log2

vol(Vj )

vol(G)
≥ ε3 log2 n.

(70)

Recall that

−
∑

j∈B

vol(Vj )

vol(G)
· H j −

∑

j∈B

� j · vol(Vj )

vol(G)
log2

vol(Vj )

vol(G)

≤ H2(G) ≤ ε3 log2 log2 n. (71)

Comparing Equation (71) with (70) and noting that � j >
φ = 1/ logδ n for j ∈ B and 0 < δ < 1, we know that
these two equations conflict for sufficiently large n. So there
must be a constant ρ0 > 0 such that vol(A) ≥ ρ0 · vol(J ) ≥
ρ0(1− ε) · vol(G).
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Recall that for each j ∈ J , H j ≤ ε2 log2 log2 n. Since

H j = −
∑

v∈Vj

dv

vol(Vj )
log2

dv

vol(Vj )
,

there must be a subset of nodes I j ⊆ Vj , such that for each
v ∈ I j ,

dv

vol(Vj )
≥ 1

logε
2 n

,

and
∑

v∈I j

dv

vol(Vj )
≥ 1− ε,

because otherwise, for each v ∈ Vj \ I j ,
dv

vol(Vj )
< 1

logε
2 n , and

so

H j ≥ −
∑

v∈Vj\I j

dv

vol(Vj )
log2

dv

vol(Vj )

> −ε log2

(
1

logε
2 n

)

= ε2 log2 log2 n,

which is a contradiction. The size of I j satisfies

|I j | ≤ vol(Vj )

min
v∈I j
{dv} ≤ logε

2 n.

This means that in each Vj for j ∈ J = A ∪ B , there is a
subset I j of size logε

2 n and volume (1− ε) · vol(Vj ).
In particular, consider the Vj ’s for j ∈ A. Let g j be the total

weights of edges each of which has exactly one end-point in
Vj . So g j = � j · Vj . Since vol(I j ) ≥ (1 − ε) · vol(Vj ), the
conductance of I j satisfies

�(I j ) ≤ g j + (vol(Vj )− vol(I j ))

vol(I j )

≤ (1+� j ) · vol(I j )
1−ε − vol(I j )

vol(I j )

= ε−1 ·� j + 1

ε−1 − 1
≤ ε−1 · φ + 1

ε−1 − 1
≤ 2ε

1− ε

for sufficiently large n. Set S = ∪ j∈A I j and ρ = ρ0(1 −
ε). Noting the arbitrariness of ε, the subset S has a volume
vol(S) ≥ ρ · vol(G), and each node in it belongs to a subset
(some I j ) of size logo(1) n and conductance o(1).

Then we consider the complement S of S. It is exactly
the union of Vj for j in A \ S, B and J . Since for j ∈ B ,
� j > φ, we know that if vol(B) is not negligible, that is,
there is a constant η > 0 such that vol(B) ≥ η · vol(G), then

−
∑

j∈B

vol(Vj )

vol(J )
· H j −

∑

j∈B

vol(Vj )

vol(J )
log2

vol(Vj )

vol(J )
= o(log2 n),

because otherwise,

H2(G) ≥ −
∑

j∈B

vol(Vj )

vol(G)
· H j −

∑

j∈B

� j · vol(Vj )

vol(G)

· log2
vol(Vj )

vol(G)

= �

⎛

⎝−
∑

j∈B

vol(Vj )

vol(B)
· H j −

∑

j∈B

� j · vol(Vj )

vol(B)

· log2
vol(Vj )

vol(B)

⎞

⎠

= �
(

log1−δ
2 n

)
,

which contradicts to the fact that H2(G) = o(log log n). Thus,

H1(B) = −
∑

j∈B

vol(Vj )

vol(B)
· H j −

∑

j∈B

vol(Vj )

vol(B)
log2

vol(Vj )

vol(B)

= o(log2 n).

By a similar discussion to the prove of (1), we know that
there is a subset U ⊆ ∪ j∈BVj with size |U | = no(1), volume
vol(U) = (1− o(1)) · vol(B).

Since almost all volume of B is contributed by U and the
volumes of both A\S and J are negligible compared to vol(G),
we know that U ’s volume is approximately B’s volume, and is
also approximately S’s volume. That is, vol(U) = (1− o(1)) ·
vol(S), which is also �(vol(G)) because vol(S) ≥ vol(B)
is not negligible. Consider the edges that has exactly one
end-point in U . The total weight of those whose the other
end-point is in S \U is at most vol(S \U) = o(vol(G)). The
total weight of those whose the other end-point is in A is at
most �(A) · vol(A). Note that for each j ∈ A, � j ≤ φ. Thus,
�(A) ≤ φ, and �(A) · vol(A) ≤ φ · vol(G) = o(vol(G)).
So �(U) = o(1), and (2) has been proved.

This completes the proof of Theorem 62. �
On the other hand, for a connected network G, if H2(G) =

o(log log n), then there must be a set of nodes S such that the
volume of S is huge while each node in S belongs to a tiny set
of small conductance, so that a random walk in G is highly
like to arrive at S, and once arrives at S, it is hard to escape
from S.

We have seen that structural information of a network
measures the dynamical complexity of the network as the
least overall number of bits to determine the code of
the node that is accessible from a step of random walk
in the network. As we have mentioned early, structural
information provides a measure to characterise the natural
structures of a network. We will verify that this is indeed
the case.

XVI. STRUCTURAL INFORMATION

MINIMISATION PRINCIPLE

Given a network G, our K -dimensional structural
information HK (G) determines a K -dimensional structure T
such that the K -dimensional structural information of the
network given by T is minimised. Structural information
minimisation is the problem to find such a K -dimensional
structure T which minimises the K -dimensional structural
information of the network.

In this section, we will investigate the roles of the
structure T that minimises the structural information in the
network.
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A. Structural Information Minimization Principle for
Discovering Natural Communities in Networks

Given a network G = (V , E), our algorithm E is to find
a partition P such that LP (G) is minimized. The problem is
clearly hard. Here we describe a simple greedy algorithm to
find a partition which minimizes the structural information of
the network G. Before describing the algorithm, we define the
following notation.

Suppose that P = {X1, X2, · · · , X L} be a partition of V .
For i, j with 1 ≤ i, j ≤ L. We define �P

i, j (G) as follows:

�P
i, j (G) = − Vi

2m

ni∑

k=1

d(i)
k

Vi
log

d(i)
k

Vi

− Vj

2m

n j∑

k=1

d( j )
k

Vj
log

d( j )
k

Vj

+VX

2m

ni+n j∑

k=1

d(i, j )
k

VX
log

d(i, j )

VX

− gi

2m
log

Vi

2m
− g j

2m
log

Vj

2m
+ gX

2m
log

VX

2m

= 1

2m
[(Vi − gi ) log Vi + (Vj − g j ) log Vj

− (VX − gX ) log VX + (gi + g j − gX ) log 2m],
(72)

where X = Xi ∪X j , VX is the volume of X , gX is the number
of edges from X to nodes outside of X , d(i, j )

k is the degree of
the k-th node in X .

By definition, we have (i) for every pair (i, j), �P
i, j (G) is

locally computable, and (ii) for any i , j , if there is no edge
between Xi and X j , then �P

i, j (G) < 0.
(i) is obvious.
For (ii). If there is no edge between Xi and X j , then

gX = gi + g j , and VX = Vi + Vj . By using these, we have
that

�P
i, j (G) = 1

2m
[(Vi − gi) log Vi + (Vj − g j ) log Vj

−(VX − gX ) log VX ]
= 1

2m
[(Vi − gi) log

Vi

Vi + Vj

+ (Vj − g j ) log
Vj

Vi + Vj
] ≤ 0. (73)

Definition 63 (Structural Information Minimisation
Algorithm E): We now describe our algorithm E , which
proceeds as follows.

(1) Suppose that v1, v2, · · · , vn are all the nodes in V with
ordering as they are listed. Set Xi to be the singleton
{vi } for all i , which form the initial partition of V .
Suppose that P = {X1, X2, · · · , X L} is a partition with
ordering as they are listed.

(2) If there is no i < j such that �P
i, j (G) > 0, then

terminate with output P , where e(Xi , X j ) is the number
of edges between Xi and X j .

(3) Otherwise, then let i0, j0 be such that �P
i0, j0

(G)

is maximized among �P
i, j (G) for all i, j ’s,

set X = Xi0 ∪ X j0 , set P = {X1, · · · , Xi0−1,
Xi0+1, · · · , X j0−1, X j0+1, · · · , X L−1, X}, and go
back to step (2).

In [32], we have shown that the algorithm E by structural
information minimization exactly identifies or precisely
approximates natural or true communities in large-scale
networks.

B. Algorithm for Minimising the K -Dimensional Structural
Information - Identifying Natural Structures in Networks

In this section, we describe an algorithm for finding
a partitioning tree T of a graph G of height K to minimise
the K -dimensional structural information of G by T .

Two operators, the merging operator and the combining
operator, are introduced, and a partitioning tree is developed
by using the two operators.

First, we define the merging operator. Let T be
a partitioning tree and let α and β be nodes of T with α <L β
(meaning that α is to the left of β) and α− = β− = γ for
some γ . In addition, let α = γ ˆ〈i〉, and β = γ ˆ〈 j〉 for i < j .

Definition 64 (Merging Operator): We define a partitioning
tree below, which is obtained from T via the following merging
operator: M(T ; α, β):

Let Tα = {x1, x2, · · · , xM } and Tβ = {y1, y2, · · · , yN },
which are ordered as listed in the sets. Then,

(1) Define Tα = {x1, x2, · · · , xM , y1, y2, · · · , yN }, which
are ordered as they are listed.

(2) Set h(α)← h(α).
(3) For each s ∈ {1, 2, · · · , M}, define Tα ˆ〈s〉 = {xs} with

h(αˆ〈s〉)← h(α) + 1.
(4) For every t with M + 1 ≤ t ≤ M + N, define Tα ˆ〈t〉 =
{yt−M} with h(αˆ〈t〉) = h(α)+ 1.

(5) Delete β.
(6) For every j ′ > j , if γ ˆ〈 j ′〉 is defined, then set

Tγ ˆ〈 j ′−1〉 ← Tγ ˆ〈 j ′〉.

Here, we use T T
G (α, β) to denote the partitioning

tree defined by T via the merging operator M(T ; α, β)
above.

We define the difference between the structure entropies
of G obtained from a partitioning tree T and a partitioning
tree obtained from T through a merging operator.

For a graph G = (V , E) and a partitioning tree T of G,
let α, β ∈ T such that α− = β− and h(α) < K . Then, define
�G(T ; α, β) = LT (G)− LT ′(G), where T ′ = T T

G (α, β). By
definition, we have

�M
G (T ; α, β) = −

∑

γ∈T : α⊆γ or β⊆γ

gγ

2m
log2

Vγ

Vγ−

+
∑

δ∈T ′: α⊆δ

gδ

2m
log2

Vδ

Vδ−
. (74)

In this case, if α and β occur such that α <L β, α− = β−,
h(α) < K , and if �M

G (T ; α, β) > 0, then M(T ; α, β) is
defined and written as M(T ; α, β) ↓.

According to equation (74), �M
G (T ; α, β) is locally

computable.
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Second, we define the combining operator.
Definition 65 (Combining Operator): Let G = (V , E) be

a graph, and let T be a partitioning tree of G.
For any α, β ∈ T , if:
(i) α− = β− = γ for some γ , and
(ii) for any δ ∈ T , if either α ⊆ δ or β ⊆ δ, then h(δ) < K ,
then define the combining operator C(T ; α, β) as follows:
– create a new node ξ with Tξ = Tα ∪ Tβ and ξ− = γ ,
– let the two branches with root α and β in T be two

branches of ξ , while maintaining the same order as in T .
By definition, the �-function with the combining operator

C(T ; α, β) is as follows:

�C
G(T ; α, β) = HT (G; α)+ HT (G; β)− (HT ′(G; ξ)

+ HT ′(G; α)+ HT ′(G; β)), (75)

where T ′ is the tree obtained from T by the combing operator
C(T ; α, β).

If α <L β such that α− = β−, and if α ⊆ δ or β ⊆ δ
implies h(δ) < K for every δ and �C

G(T ; α, β) > 0. Thus,
C(T ; α, β) is defined and written as C(T ; α, β) ↓.

In this case, it is clear that �C
G(T ; α, β) is locally

computable.
Finally, we introduce our algorithm denoted EK by using

both the merging and combining operators.
Definition 66 (Algorithm EK for Detecting K -Dimensional

Natural Structure of Networks): Let G = (V , E) be a graph.
Suppose that {v1, v2, · · · , vn} is the set of all vertices in V
ordered as they are listed in the set. The K -dimensional
structural information algorithm on G proceeds as follows:

(1) Define the initial partitioning tree T as follows:
– Set Tλ = V with h(λ) = 0, and for every i ∈
{1, 2, · · · , n}, define Tλˆ〈i〉 = {vi } with h(λˆ〈i〉) =
h(λ)+ 1.

(2) If there are α, β ∈ T such that M(T ; α, β) ↓, then
a) choose α and β such that �M

G (T ; α, β) is
maximised;

b) let T ′ be the partitioning tree obtained from T by
the merging operation of T with α and β;

c) set T ← T ′; and
d) go back to step (2).

(3) If there are α, β ∈ T such that C(T ; α, β) ↓, then
a) choose α and β such that �C

G(T ; α, β) is
maximised;

b) let T ′ be the partitioning tree obtained from T by
the combining operation of T with α and β;

c) set T ← T ′; and
d) go back to step (2).

(4) Otherwise, output the partitioning tree T , and terminate
the program.

The algorithm EK outputs a partitioning tree T of G.
Clearly algorithm EK works naturally on weighted networks.

Time complexity of algorithm EK . For K = 2, the time
complexity of E2 is O(n2) for all graphs, and is O(n · log2 n)
for sparse networks [32], where n is the number of nodes in
the graph. This algorithm is a nearly linear time algorithm
for networks, which easily functions for networks that include
millions of nodes. For K = 3, for every first level node α in

the partitioning tree, the size of Tα does not decrease during
the implementation of the algorithm. Therefore, |Tα| = M
for M with 1 ≤ M ≤ n. For a fixed M and a fixed Tα of
size M , the number of operations associated with the children
of α is the time complexity of an E2 with M graphs of M
nodes; thus, O(M2) for general graphs, and O(M · log2 M)
for networks. This analysis gives the time complexity with
one first level node α of the partitioning tree O(n3) for all
graphs and O(n2 log2 n) for sparse graphs. Because there are
at most n first level nodes in the partitioning tree, the time
complexity of E3 is bounded by O(n4) for all graphs, and
O(n3 ·log2 n) for sparse networks, which is significantly larger
than that of E2.

The time complexity analysis above clearly indicates that
our algorithm E3 is not a hierarchical clustering algorithm
with 3 levels. Because of the time complexity of O(n3 log2 n)
for sparse networks or O(n4) for all graphs, although E3 is
a polynomial time algorithm, it can, in practice, only manage
graphs that contain thousands of nodes. Therefore, it is difficult
to detect the natural K -dimensional structure of a network of
large sizes for K > 3 (the time complexity generally increases
by a factor of n2 whenever the dimension increases by 1, for
dimensions K ≥ 2), which poses a new issue regarding the
design of better algorithms for minimising the K -dimensional
structural information of networks for each K > 1, including
for the case of K = 2. We remark that the time complexity
O(n log2 n) of E2 for networks is in fact impractical for n as
large as hundreds of millions. For this reason, there is a need to
design better algorithms to find the minimal two-dimensional
structural information of networks.

Finally, we note that EK is a heuristic algorithm to
compute the K -dimensional structural information of graphs
and indicate that precisely computing the K -dimensional
structural information of graphs is an extremely difficult
problem that should be resolved in future computer science
studies.

Remark: (i) the merging operator combines two
sets X and Y into a set Z = X ∪ Y such that all of
the nodes in Z are not distinguished and are allowed to
re-group within Z in the future; (ii) the combining operator
combines two sets X and Y into Z = X ∪Y such that that the
subtypes X and Y are kept within Z ; (iii) the two operators
are natural rules in real world clustering, which incorporates
the idea of a mixture both bottom-up and top-down
methods; (iv) our algorithm EK is a basic greedy strategy
for minimising the K -dimensional structural information,
and new rules are required to design new algorithms to
minimise the K -dimensional structural information of graphs;
(v) we determined the K -dimensional structural information
for small values of K because, in real world networks,
hierarchical structures occur; however, the number of levels
of a community within a community is indeed small.

Clearly, our algorithm EK not only seeks to follow the
principle of self-organisation of networks, but also the natural
rules in the real world as the operators of the algorithm.
The algorithms are designed to explore the natural two- and
three-dimensional structures of networks rather than optimise
an artificially defined object function. We use this strategy
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because natural objects can be identified by following natural
rules, and algorithm E2 has been shown to successfully detect
natural communities in social networks [32]. The algorithm
E3 can be regarded as a deep detecting algorithm that seeks
to explore the natural hierarchical structure of networks.

In [36], we have shown that the cell types and subtypes of
the cell sample networks constructed from the gene expression
profiles identified by our algorithms E2 and E3 are defined by
a unique gene expression pattern, leading to a high-definition,
one-to-one map of tumour types and subtypes and the gene
expression patterns. We have also shown that most cell
samples within the same type or subtype identified by our
algorithms E2 and E3 share similar survival times, survival
indicators and International Prognostic (IPI) scores, and that
cell samples from distinct types or subtypes identified by our
algorithms E2 and E3 have distinct overall survival times,
survival ratios and IPI scores.

C. Security Engineering of Networks

Li et al. [33] proposed a security model of networks. The
authors [34] have shown that for appropriately large affinity
exponent a, for sufficiently large networks generated by the
security model, with probability almost 1, for any set S
of the nodes of the network, if the size of S is bounded
by logO(1) n, then the infection set of S in the network G
has size at most o(n), where n is the number of nodes
of network G. The authors have shown that Theorem 59
holds for the networks of the security model. This result,
together with the security theory in [34] demonstrate that as
the affinity exponent a varies, the lower the two-dimensional
structural information of the networks is, the more secure
the networks of the security module are. This indicates
that two-dimensional structural information minimisation
would be a principle of network security. In particular,
the normalised two-dimensional structural information could
provide an index for the security of networks. Nevertheless, the
two-dimensional structural information minimisation provides
a principle for network security engineering.

D. Emergence of Cooperation in Evolutionary
Games in Networks

According to Darwin’s evolution theory [18], animals from
ants to people form social groups in which most individuals
work for the common good. The cooperation of social
groups is certainly key to the survival and the evolution of
species. Darwin suggested that kinship and reciprocity are
the means for fitness for survival. Our homophyly/kinship
model realises some of Darwin’s idea by networks [31].
In [31], it was shown that for appropriately large affinity
exponent a, and the networks of the homophyly/kinship
model, cooperation is guaranteed to emerge in the evolutionary
prisoner’s dilemma games in the networks. According to
Theorem 59, we now know that as the affinity exponent a
varies, the two-dimensional entropy of the networks vary, and
that the lower the two-dimensional structural information of
the networks is, the higher the emergence of cooperation of

evolutionary games in the networks. The results demonstrate
the following principle:
• Structural information minimisation is the principle for

the natural structures of a naturally evolving network.
• Structural information minimisation is the principle for

the emergence of cooperation in evolutionary games in
the network.

The principle above provides a significant first step towards
a mathematical theory of evolutionary games in networks,
nature and society.

XVII. NATURAL STRUCTURE DISCOVERY

In Definition 17, we define the natural structure of a network
to be the structure of the network that minimises the structural
information of the network. To see that the natural structure
defined here is in fact the true structure of the network, we
noticed that Li et al. [36] have developed a three-dimensional
gene maps of cancer cell types and subtypes for a number
of cancers. The method consists of two steps, the first step
is to construct a network of the unstructured gene expression
profiles on the basis of one-dimensional structural information
minimisation, and the second step is to find the cell types and
subtypes by our algorithms E2 and E3 on the basis of the two-
and three-dimensional structural information minimisation
above.

For completeness of the paper, we introduce three figures
of the gene maps for Lymphoma developed in [36]. (Details
of the data and experiments can be found in [36].)

The Lymphoma data from Alizadeh et al. [1], which
contain the expression of 4, 026 genes for 96 samples,
which constitute 9 cell types. The 9 types consist of
three different types of tumours, diffuse large B cell
lymphoma (DLBCL), chronic lymphocytic leukaemia (CLL),
and follicular lymphoma (FL), as well as normal B and T
cells at different stages of cell differentiation, including
germinal centre B, NL.lymph node/tonsil, activated blood B,
resting/activated T, transformed cell lines, and resting blood B.
On the basis of gene expression profiling, Alizadeh et al. [1]
have suggested dividing the DLBCL type into two subtypes,
GC B-like DLBCL and activated B-like DLBCL.

We use our algorithms EK for K = 2, 3 to identify
the modules and submodules of cancers and to compare our
algorithms with the most frequently used algorithm, namely,
the modularity maximisation algorithm M [17].

A. Gene Map of True Types

The true types of lymphoma consist of 9 types: DLBCL,
germinal centre B, NL. lymph node/tonsil, activated blood B,
resting/activated T, transformed cell lines, FL, resting blood B,
and CLL.

Figure 3 shows the gene map of the true types of lymphoma
listed as above.

Figure 3 reveals the following results:
1) All of the types are distinguishable because they are

defined by different blocks of genes.
2) All of the types except DLBCL are expressed by

different sets of genes.
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Fig. 3. Gene map of true types of the lymphomas.

3) The type DLBCL is a large set; however, it is not
well-expressed.

4) Four types (germinal centre B, NL. lymph node/tonsil,
resting/activated T and transformed cell lines) are highly
expressed by a set of many genes; thus, the blocks of
genes expressing the types are large.

5) Except for DLBCL, the 8 remaining types are highly
expressed by their corresponding blocks of genes.

These results imply that DLBCL is not a well-defined type,
which will be shown in the gene map of the modules of
lymphoma identified by the algorithm E2.

B. Gene Map of the Modules by Modularity Maximisation

The algorithm M found 4 communities of the lymphoma.
Figure 4 depicts the gene map of the four modules
of lymphoma identified by the modularity maximisation
algorithm M.

Figure 4 reveals that the four modules identified by M
are distinguishable by different sets of genes. However, the
modules identified by M are far from the true types. This
means that gene expression patterns alone is insufficient for
evaluating the modules identified by a community detection
algorithm.

C. Gene Map of the Modules by Structural Information
Minimisation Algorithm E2

Our algorithm E2 found 11 types. They are:
Module 1: OCI Ly3, OCI Ly1, WSU1, Jurkat, U937,

OCI Ly12, OCI Ly13.2, SUDHL5, DLCL-0041. This module
consists of DLBCL or Transformed cell lines.

Module 2: OCI Ly10, DLCL-0042, DLCL-0007,
DLCL-0031, DLCL-0036;OCT, DLCL-0025, DLCL-0040,
DLCL-0017, DLCL-0028, DLCL-0021, DLCL-0012.
This module is the Activated B-like DLBCL, except for
DLCL-0012.

Module 3: DLCL-0030, DLCL-0011, DLCL-0020,
DLCL-0032, DLCL-0033, DLCL-0003, DLCL-0034,

Fig. 4. Gene map of types of the lymphomas found by M.

DLCL-0051, DLCL-0001, DLCL-0018, DLCL-0037,
DLCL-0010. This module is the GC B-like DLBCL except
for DLCL-0011.

Module 4: DLCL-0004, DLCL-0029, DLCL-0008, Tonsil
GC B, Tonsil GC Centroblasts, SUDHL6, DLCL-0052. This
module consists of the GC B-like DLBCL and the Germinal
centre B.

Module 5: DLCL-0006, DLCL-0049, Tonsil, DLCL-0039,
Lymph Node, DLCL-0002. This module is the Activated
B-like DLBCL, together with Nl. lymph node/tonsil.

Module 6: DLCL-0015, DLCL-0026, DLCL-0023,
DLCL-0027, DLCL-0024, DLCL-0005, DLCL-0013,
DLCL-0016, DLCL-0014, DLCL-0048. This module is
a DLBCL subtype.

Module 7: This module is exactly the Activated blood B.
Module 8: This module is exactly the Resting/activated T.
Module 9: This module is the FL with one error

DLCL-0011.
Module 10: This module is exactly the Resting blood B.
Module 11: This module is exactly the CLL.
Figure 5 depicts the gene map of the modules of lymphoma

classified by our algorithm E2 with ordering listed as above.
Figure 5 reveals the following properties: (1) Modules

1, 2, 3, 7, 8, 9, 10, and 11 essentially correspond to
transformed cell lines, activated B-like DLBCL, GC B-like
DLBCL, activated blood B, resting/activated T, FL, resting
blood B, and CLL, respectively. (2) The DLBCL type is
essentially divided into modules 2, 3, and 6. (3) Except for
module 3, which contains the subtype GC B-like DLBCL,
every module is highly expressed by a significantly large
set of genes. (4) Module 2 is the subtype activated B-like
DLBCL and is highly expressed by a set of more than
300 genes. (5) Module 3 contains the subtype GC B-like
DLBCL (except for DLCL-0011) and is large. However, the
module is well-expressed only by a set of less than 100 genes.
This finding could be caused by i) the expression of the
subtype GC B-like by only a small set of genes or ii) an
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Fig. 5. Gene map of types of the lymphomas found by E2.

incomplete current gene expression array. (6) Module 6
contains a subset of DLBCL, and its biological and medical
classification is unknown. However, our two-dimensional gene
map shows that the module is highly expressed by a set
of more than 290 genes. (7) Module 4 is a combination of
GC B-like DLBCL, and germinal centre B. Our gene map
shows that the module is highly expressed by a set of more
than 300 genes. (8) Module 5 is a combination of activated
B-like DLBCL and NL. lymph node/tonsil. Our gene map
shows that the module is highly expressed by a set of more
than 400 genes, implying that, it is a biologically meaningful
type. (9) Module 8 is the resting/activated T, and it is highly
expressed by a set of more than 1, 800 genes. (10) Module 11
is the CLL, and it is highly expressed by a set of more than
450 genes.

These results imply that modules 2, 3 and 6 could be new
subtypes of DLBCL and modules 4 and 5 could be new
subtypes of lymphoma.

D. Three-Dimensional Gene Map

The subtypes found by the algorithm E3 are principally
a refined classification of the types by E2. For the lymphoma,
algorithm E3 found 13 types, each of which consists of two
or three subtypes.

Figure 6 depicts the gene map of the refined classification of
lymphoma derived by our algorithm E3. Figure 6 establishes
the three-dimensional gene map from the types and subtypes
of the gene expression patterns, which shows the types and
subtypes of lymphoma, and demonstrate that almost all of
the subtypes may have a biological meaning related to the
classification of tumour types and subtypes of lymphoma.
In particular, it predicts some remarkable subtypes for DLBCL
and lymphoma, which will be verified by clinical data
analyses.

The gene maps show that each of the found type or
subtype by our algorithms E2 and E3 is uniquely defined by
a gene patten. More importantly, we have shown that most

Fig. 6. Gene map of types of the lymphomas found by E3.

cell samples found by our algorithm share similar survival
times, survival indicators and IPI scores, that the samples in
different modules have significantly different overall survival
times, survival ratios, and IPI scores. These results indicate
that the classification of the cell samples by our algorithms
are interpretable and distinguishable in clinical practice.

The results demonstrate the following principles:

• Two-dimensional structural information minimisation is
the principle for defining tumour types.

• Three-dimensional structural information minimisation is
the principle for defining cancer cell subtypes.

Generally, our results demonstrate that, for the networks
naturally evolving in nature and society, the following results
hold:

• High-dimensional structural information minimisation is
the principle for the self-organisation of individuals in the
networks.

• Two-dimensional structural information minimisation is
the principle for natural communities in the networks.

• High-dimensional structural information minimisation is
the principle for the natural high-dimensional structures
of the networks.

XVIII. NATURAL RANK: LOCALLY LISTING ALGORITHMS

We design a personalized web ranking algorithm based on
the two dimensional structural information of networks. It is
a local algorithm for searching and ranking by the notion of
structural information.

Let G = (V , E) be a network. Suppose that X ⊂ V is
a subset of vertices, and that {y1, y2, · · · , yN } is the set of all
nodes y ∈ V \ X . Let Y j be the set of single node y j . Then X
and all Y j ’s form a partition of G.

For j with 1 ≤ j ≤ L, if we put y j into X , giving a new
partition of G, then by definition, the difference of structure
entropies of the two partitions is given by

�G(X; j) = 1

2m
[(VX − gX ) log VX − (VZ j − gZ j ) log VZ j

+ (gX + d j − gZ j ) log 2m], (76)
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where Z j = X∪{y j }, VX is the volume of X , gX is the number
of edges from X to nodes outside of X , d j is the degree of
y j in G, and m is the number of edges of the graph G.

Our personalized web ranking by structural information,
written by E L , is a greedy algorithm and proceeds as follows.

Definition 67 (Locally Listing Rank, E L): Given network
G = (V , E), and node v ∈ V :

(1) enumerate v into X and set l = 1,
(2) if there is no j such that �G(X; j) > 0, then terminate

with output X, and
(3) otherwise, then,

a) enumerate the y j with which �G(X; j) is
maximized, and

b) go back to step (2).
The algorithm E L with input v outputs a list of nodes

v = u1, u2, · · · , ul for some l. In this case, the output is
the set X = {u1, u2, · · · , ul } with the priority as they are
enumerated by the algorithm, which is the ranking from v by
the algorithm.

Algorithm E L generates a personalised rank by simply
listing the nodes by the priority of minimising the structural
information of the partition with the desired module and
singleton modules for all the other nodes.

Let � be the largest degree in G. Then the complexity of E L

is O(� · |X |), where X is the output set. Notice that the output
set X cannot be too large by the arguments of the definition
of structural information. This means that E L simply lists its
output, noting that the largest degree � is usually small for
real world networks.

By Theorem 18, for every input node v, the output of E L

must be a proper subset of V . In fact, the sizes of the outputs
are very small. In fact, we may set a boundary for the size of
the outputs such as logb n for some small constant b ∈ [1, 2].
In so doing, the time complexity of the algorithm is expected
to be O(logO(1) n).

We verify that algorithm E L precisely identifies the natural
communities of networks. We verify this fact by using the
networks of the homophyly/kinship model.

Definition 68: Let G = (V , E) be a network and X, Y be
sets of nodes in V . We define the similarity between X and Y
as follows:

s(X, Y ) = |X ∩ Y |√|X | · |Y | .

Given a network G = (V , E) generated by the
homophyly/kinship model, for every node v, we use Xv to
node the natural community of v, i.e., the maximal set of
nodes sharing the same color with v. Let Zv be the output
of E L with input v such that Zv is listed as the ordering as
they are listed by the algorithm E L . Let l = |Xv |, and Yv be
the set of the first l elements of Zv . We define s(v) to be the
similarity between Xv and Yv . We investigate the distribution
of s(v) for all the nodes v ∈ V .

Table I describes the soundness of the locally listing rank
algorithm E L on the networks of the homophyly/kinship
model.

TABLE I

SOUNDNESS OF THE LOCALLY LISTING RANK ALGORITHM EL ON THE

NETWORKS OF THE HOMOPHYLY/KINSHIP MODEL. T AND S DENOTE

THE TYPES AND SOUNDNESS, RESPECTIVELY

TABLE II

SOUNDNESS OF PAGERANK G WITH α = 0.15 AND ε = 0.00001 ON THE
NETWORKS OF THE HOMOPHYLY/KINSHIP MODEL. T AND S DENOTE

THE TYPES AND SOUNDNESS, RESPECTIVELY

According to Table I, we have that our locally listing rank
algorithm exactly identifies almost all the natural communities
of the networks generated by the homophyly/kinship model.

For Google’s Personalized pagerank, we will use the local
algorithm in [4] with the teleportation constant α = 0.15 as
recommended in [12] to rank the nodes of the networks of our
model from every node. We use P to denote this algorithm.

Table II describes the soundness of the PageRank algorithm
G on the networks of the homophyly/kinship model.

According to Table II, we observe the following results:
(1) For three types, the fractions of queries with precision 1

are between 73% and 79.3%.
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(2) For most types, the fractions of queries with precision 1
are from 80% to 89%.

(3) For 7 types, the fractions of queries with precision 1 are
greater than 90%.

The results demonstrate that the PageRank algorithm G finds
the precise answers for most queries in the networks of the
homophyly/kinship model.

The results demonstrate that our algorithm is a personalised,
locally listing and smart rank algorithm that precisely identifies
the natural communities for almost all the queries. Our
algorithm is remarkably better than the current-generation
search engines on the basis of PageRank in both the time
complexity and accuracy of answers for queries.

More importantly, Li, Pan and Yin (Natural rank: Locally
listing detection of natural communities in networks,
submitted) have shown that for a model that generates
networks with natural community structure, and for
a network G generated by the model,

(1) For most communities X , our locally listing rank
algorithm exactly identifies X from every query input
in X ,

(2) (1) above holds for every network of the model, and
(3) Both (1) and (2) hold for all the existing models that

generate networks with natural communities.
(4) Our locally listing algorithm exactly identifies the cancer

cell types for a number of cancers.

We also showed that (1) - (4) are no longer true for the
PageRank algorithms.

We thus verified that our personalized web ranking
algorithm E L identifies or precisely approximates most or even
almost all natural or ground-truth communities of large-scale
networks. Our results demonstrated that precise searching and
ranking in large-scale networks can be efficiently realized, for
which structural information minimization is the principle, and
that the current-generation search engine based on PageRank
vectors fails to precisely identify most of the natural or
ground-truth communities of large-scale networks.

XIX. CONCLUSIONS AND NEW CHALLENGES

We proposed the notions of positioning entropy
(or one-dimensional structural information), structural
information (or two-dimensional structural information),
and K -dimensional structural information of graphs for
K ≥ 3. The K -dimensional structural information of a graph
is defined to be the minimum overall number of bits needed
to determine the K -dimensional code of the node that is
accessible from a step of random walk in the graph, for each
K ≥ 1. For a network G and a dimensionality K , we use
HK (G) to denote the K -dimensional structural information
of G.

The K -dimensional structural information of a graph is
both the measure of structural information and the dynamical
complexity of networks.

We demonstrated that the K -dimensional structural
information functions of networks satisfy a number of
important properties, including: (i) network dependency,
(ii) additivity, (iii) locality, (iv) dynamics, (v) essentiality,

(vi) robustness, (vii) linking nature to science, (viii) local
computability, (ix) incremental computability and (x) applica-
bility. These properties ensure that K -dimensional structural
information is a well-defined measure for the dynamical
complexity of networks, for each K .

Our K -dimensional structural information of graphs is
the first metric of structural information, solving the great
challenge suggested by Shannon in 1953 [13], [48].

The K -dimensional structural information of networks
provides an approach to investigate the dynamical complexity
of networks, and classify the networks, solving a fundamental
challenge of network theory.

A. Conclusions

Given a network G, the K -dimensional structure, T say,
of G that minimises the K -dimensional structural information
of G naturally characterises the natural K -dimensional
structure of the network. Our theory demonstrates that
(K -dimensional) structural information minimisation is the
principle for detecting the natural K -dimensional structure of
networks.

We established the theory of one- and two-dimensional
structural information of graphs and networks. The theory
consists of the following results:

(1) Positioning entropy principle
If G is either simple or with balanced weights, then

H1(G) = �(log n).

Remark: The differences between distinct graphs are
thus only in the hidden constant in �.

(2) Modularity principle
For an arbitrarily given connected graph G, the
modularity of G is bounded by 1−�(G), where �(G)
is the conductance of G.

(3) Basic principle of two-dimensional structural
information
For an arbitrarily given graph G,

H2(G) ≥ �(G) ·H1(G).

This establishes a useful relationship between the
one- and two-dimensional structural information of all
the graphs through the combinatorial object of the
conductance.

(4) Lower bound of two-dimensional structural information
of graphs
If G is either simple or with balanced weights, then

H2(G) = �(log log n).

This gives a lower bound of the two-dimensional
structural information of all the usual networks.

(5) Structural information of classical data structures
a) If G is a tree, then

H2(G) = �(log log n).

b) If G is a grid graph, then

H2(G) = �(log log n).
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This principle indicates that the most fundamental data
structures such as trees or grids in computer science,
and in nature and society may achieve the minimum
two-dimensional structural information of the data
structures. The results indicate that the most important
data structures for the big data in the information age
should achieve the minimum structural information of
new data structures. The question is hence: what are the
possible candidates for the new data structures?

(6) Structural information of the networks of the preferential
attachment model
If G is a network generated by the preferential
attachment model, then

a) If d = 1, then with probability 1− o(1),

H2(G) = �(log log n).

b) If d ≥ 2, then with probability 1− o(1),

H2(G) = �(log n).

This shows that nontrivial networks of the preferential
attachment achieve the maximum two-dimensional
structural information.

(7) Structural information of the networks of dynamical
random model
If G is a network generated by the uniform attachment
model, then

a) If d = 1, then with probability 1− o(1),

H2(G) = �(log log n).

b) If d ≥ 2, then with probability 1− o(1),

H2(G) = �(log n).

This result indicates that nontrivial networks generated
by a dynamical random procedure have the maximum
two-dimensional structural information.

(8) Structural information of networks of the small world
model
If G is a network generated by the small world model
introduced by Kleinberg, then

a) If r ≥ 2, then with probability 1− o(1),

H2(G) = �(log log n).

b) If r < 2, then with probability 1− o(1),

H2(G) = �(log n).

This result indicates that if r ≥ 2, then the networks of
the small world model achieve the minimum structural
information, in which case, the networks behave like
grid-like graphs. Interestingly, the result explores a phase
transition phenomenon of the structural information of
the networks of the small world model from �(log n)
to O(log log n).

(9) Structural information of nature evolving
If G is a network generated by the homophyly/kinship
model with affinity exponent a and average number of
edges d , then

a) If a = 0 and d = 1, then

H2(G) = �(log log n).

b) If a = 0 and d > 1, then

H2(G) = �(log n).

c) If 0 < a < 1, then

HN (G) = �(log1−a n),

where N is the natural community structure of G.
d) If a ≥ 1, then

H2(G) = �(log log n).

This result explores a new principle of the networks
naturally evolved in nature and society. The result
demonstrates that naturally evolving networks may
provide new data structures for computer science
in the information age.

(10) Black hole principle
Given a connected network G = (V , E) with
weight function W , there is a black hole in G if
and only if H2(G) = o(log log n).
This principle indicates that our theory of
structural information may have implications in
physics.

B. New Challenges

Our theory here also partially solves or points to a solution
to the following challenges:

1) What are the principles of self-organisation for
individuals in networks?
This challenge is high level, but very interesting.
Suppose that self-organisation is a natural selection and
that natural selection is the controlling principle of
the evolution from random variations. Then structural
information minimisation is the principle of self-organis-
ation. This implies that people fear uncertainty, and
that minimisation of the uncertainty of an individual in
a group is the principle for the individual to survive
in a group and in the society. This result emphases
that uncertainty or non-determinism of high-dimensional
structures is a serious problem for a network or a society.
The investigation of this challenge would solve some
long standing challenges in social sciences.

2) What are the principles for networking of unstructured
big data?
Networking of unstructured data is the first step of
big data processing. Structural information minimisation
provides the principle for this mission. A successful
application of this principle has been developed in [36].
However, further investigation of the challenge is
needed.

3) What are the principles determining the natural
structures of real world networks?
If structural information minimisation is the
principle of self-organisation of individuals, then
the algorithms for minimising the structural information
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would find the natural or ground truth social
groups.

4) What are the principles for networking engineering?
This question is explicitly stated by Shannon [48].
Partial solution for this challenge has already been given
by the current authors in [34]. The best communication
systems may be designed by combining both the
engineering requirements and the structural information
entropy minimisation principle, for which the complete
solution requires the combination of our theory and
networking engineering.

Of course, each of the four challenges can only be fully
resolved by separate papers following the theory in the present
paper.

In addition, there are a number of interesting, but less
challenging, open questions left by this research. The most
interesting such questions include:

(1) Computational complexity and approximation
algorithms for the problem of minimising the K -dimens-
ional structural information of graphs.

(2) Locally testable algorithms for the two-dimensional
structural information of graphs. That is to design
sub-linear algorithms to test whether or not the structural
information of a graph is either �(log n) or O(log log n)
or far from the classes of graphs.

(3) Better applied algorithms for computing
the K -dimensional structural information of graphs.

(4) Are there polynomial time algorithms on trees and
grid that can be extended to the networks G with
H2(G) = O(log log n)? Are the networks G with
H2(G) = O(log log n) new data structures for
networking information?
The measure of our structural information is a notion
between information science and computer science. The
algorithmic theory of the structural information would
bring the theory to practice. Questions (1) - (4) are the
new algorithmic problems of the information theoretic
notion.

(5) Is structural information minimisation really the
principle for network security?

(6) Is structural information minimisation really the
principle for the emergence and convergence of
cooperation in evolutionary games in networks?
This problem is closely related to question (10) below,
understanding the cooperation behaviors in the evolution
of selfish individuals.

(7) What are the principles for networking of unstructured
data?
Answering this question may provide new ideas
for algorithms for big data. Structural information
minimisation could be such a principle.

(8) Is there a new learning and deep learning theory that
can be built based on the high-dimensional structural
information?

(9) Is structural information minimisation a principle for
networking computing systems?
This question is closely related to the principle of
networking engineering above.

(10) What roles does structural information minimisation
play in biology and in evolution of species? What is the
relationship between structural information minimisation
principle and natural selection?
Suppose that natural selection is the controlling principle
of the evolution from random variations. Then by
our theory, structural information minimisation is the
principle of the natural selection in the evolution.

(11) Robustness of the K -dimensional structural information
of the networks generated by the classical models?
This question is to prove that the K -dimensional
structural information of all the networks generated by
a model, the preferential attachment model say, with the
same type, are almost the same, that is, the differences
are within a constant bound that is independent of the
size of the networks. This question allows us to develop
a rich mathematical theory of the structural information
of networks.

(12) To fully develop a structural information theory,
a dynamical complexity theory of networks and
a dynamical complexity theory of computation.
This points to new directions in information theory,
network theory and computational theory based on the
metric of the K -dimensional structural information of
graphs. In particular, the current research suggests that
it would be the new mission of information theory to
distinct the certainty and the contingency of noisy data,
for which our theory provides the foundation.

APPENDIX A
PROBABILISTIC TOOLS

At first, we introduce some useful probabilistic tools and
inequalities.

We will use the following form of Chernoff bound.
Lemma 69 (Chernoff Bound [14]) Let X1, . . . , Xn be

independent random variables with Pr[Xi = 1] = pi and

Pr[Xi = 0] = 1 − pi . Denote the sum by X =
n∑

i=1
Xi with

expectation E(X) =
n∑

i=1
pi . Then we have

Pr[X ≤ E(X)− λ] ≤ exp

(
− λ2

2E(X)

)
,

Pr[X ≥ E(X)+ λ] ≤ exp

(
− λ2

2(E(X)+ λ/3)

)
.

We will use the following form of Azuma’s inequality for
martingales.

Lemma 70 (Azuma’s inequality) Let c = (c1, . . . , cn) be
a vector of positive entries. Let a sequence of random variables
X0, X1, . . . , Xn be a martingale. If it is c-Lipschitz, that is,
|Xi − Xi−1| ≤ ci for i = 1, . . . , n, then for any λ > 0,

Pr[Xn ≤ X0 − λ] ≤ exp

(
− λ2

2
∑n

i=1 c2
i

)
,

Pr[Xn ≥ X0 + λ] ≤ exp

(
− λ2

2
∑n

i=1 c2
i

)
.
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We will use the following form of supermartingale
inequality.

Lemma 71 (Supermartingale Inequality, [16, Th. 2.40]):
For a filter {0,�} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F , suppose
that a non-negative random variable Xi is Fi -measurable
for 0 ≤ i ≤ n. Let B be the bad set associated with the
following admissible conditions: (that is, the set of events
that the conditions fail to hold.)

E(Xi |Fi−1) ≤ Xi−1,

Var(Xi |Fi−1) ≤ σ 2
i + φi Xi−1,

Xi − E(Xi |Fi−1) ≤ ai + M,

where σi , φi , ai and M are non-negative constants. Then we
have

Pr(Xn ≥ X0 + λ)

≤ exp

(
− λ2

2(
∑n

i=1(σ
2
i + a2

i )+ (X0+λ)(
∑n

i=1 φi )+Mλ/3)

)

+ Pr(B).

The following fact will also be very useful in our proofs.
Fact 72: For any real x,

1

x + 1
≤ log

(
1+ 1

x

)
≤ 1

x
.

Proof: Note that 1+ y ≤ ey holds for all real y. The fact
is obtained by replacing y with − 1

x+1 and 1
x , respectively. �

The following expansion of power series is folklore.
Fact 73: For any u > 0 and |x | ≤ 1,

(1± x)u = 1± ux + u(u − 1)

2! x2 ± u(u − 1)(u − 2)

3! x3

+ · · · + (−1)m u(u − 1) · · · (u−m + 1)

m! xm + · · · .

APPENDIX B
PROOF OF THEOREM 48

Proof of Theorem 48: For (1). By the construction of G,
the expectation of |Ct | is

E[|Ct |] = 2+
t∑

i=3

1

loga i
.

By indefinite integral
∫

(
1

loga x
− a

loga+1 x
)dx = x

loga x
+ C,

we know that if t ≥ T1 is large enough, then

t∑

i=3

1

loga i
≤ 1+

∫ t

2

1

loga x
dx

≤
∫ t

2

6

5
(

1

loga x
− a

loga+1 x
)dx

≤ 4t

3 loga t
,

where 6
5 and 4

3 are chosen arbitrarily among the numbers larger
than 1. Similarly,

t∑

i=3

1

loga i
≥
∫ t

2

1

loga x
dx

≥
∫ t

2
(

1

loga x
− a

loga+1 x
)dx

≥ 3t

4 loga t
.

By the Chernoff bound, since t ≥ T1, with probability 1−
ex p(−�( t

loga t )) = 1−o(n−1), we have t
2 loga t ≤ |Ct | ≤ 2t

loga t .
By the union bound, such an inequality holds for all t ≥ T1
with probability 1− o(1).

For (2). By the construction of G, the expectation of |S| at
time step t is

E(|S|) = 1+
t∑

i=tS+1

(
1− 1

loga i

)
· 1

|Ci | .

Before going on the proofs, we define the following:
Definition 74: Let E be the event that: for all i ≥ T1,
i

2 loga i ≤ |Ci | ≤ 2i
loga i .

We will use this event several times throughout the proofs.
By (1), we know that E holds with probability 1 − o(1).

Thus, at time step t ,

E(|S|) = �

⎛

⎝
t∑

i=tS

(
1− 1

loga t

)
· loga t

t

⎞

⎠

= �

(∫ t

tS

loga x

x
dx

)

= �(loga+1 t − loga+1 tS).

For (3). It suffices to prove that with probability 1 −
o(n−1), the homochromatic set of the first color κ has size
O(loga+1 n). Then the result follows from the union bound.

Let Sκ be the set of nodes share color κ .
Conditioned on the event E , in Definition 74, for large

enough n,

E(|Sκ |) = 1+
n∑

i=3

(
1− 1

loga i

)
· 1

|Ci |

≤ T1 +
n∑

i=T1+1

(
1− 1

loga i

)
· 2 loga i

i

≤ 3 loga+1 n.

By the Chernoff bound,

Pr[|Sκ | > 4 loga+1 n] = o(n−1).

Therefore, with probability 1 − o(n−1), the size of Sκ is at
most 4 loga+1 n.

For (4). We need to bound the number of global edges with
one endpoint in S.

For t ≥ tS , define S[t] to be the snapshot of S at time
step t , and ∂(S)[t] to be the set of edges from S[t] to S[t],
the complement of S[t]. So ∂(S)[t] is in fact the set of global
edges of S at time step t and gS = |∂(S)[n]|. Denote by
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D(S)[t] the total degree of nodes in (volume of) S[t]. In our
proof, we first give a recurrence for the expected value of
D(S)[t] at any time step t > tS , and then show that ∂(S)[n]
is not expectedly too many.

By the construction of G, the recurrence on D(S)[t] can be
written as

E[D(S)[t] | D(S)[t − 1]]
= D(S)[t − 1] + 1

loga t
· D(S)[t − 1]

2d(t − 1)
· d

+
(

1− 1

loga t

)
· 2d

|Ct−1| . (77)

We suppose the event E that for all t ≥ T1 = loga+1 n,
t

2 loga t ≤ |Ct | ≤ 2t
loga t , which almost surely holds by (1). It also

holds for t ≥ T2 for sufficiently large n. On this condition,

E(D(S)[t] | D(S)[t − 1], E)

≤ D(S)[t − 1]
[

1+ 1

2(t − 1) loga t

]

+4d loga t

t
. (78)

Taking expectation on both sides, we have

E(D(S)[t]) ≤ E(D(S)[t − 1])
[

1+ 1

2(t − 1) loga t

]

+4d loga t

t
. (79)

Then we analyze this recurrence for the cases of a ≥ 1 and
a < 1, respectively.

When a ≥ 1, since for sufficiently large n and thus for
sufficiently large t with t ≥ tS ≥ T2, we have

9d loga+1(t + 1)−
[

1+ 1

2(t − 1) loga t

]
· 9d loga+1 t

≥ 9d loga t log
t + 1

t
− 9d log t

2(t − 1)

≥ 9d loga t

t + 1
− 9d loga t

2(t − 1)

≥ 4d loga t

t
, (80)

where the second inequality follows from Fact 72. Applying
it to Inequality (79), we have

E(D(S)[t])− 9d loga+1(t + 1)

≤
[

1+ 1

2(t − 1) loga t

]
· (E(D(S)[t − 1])− 9d loga+1 t).

Recursively, we have that

E(D(S)[t]) ≤ θt · [E(D(S)[tS])
− 9d loga+1(tS + 1)] + 9d loga+1(t + 1)

holds for all tS < t ≤ n, where

θt =
t∏

i=tS+1

[
1+ 1

2(i − 1) loga i

]
.

Note that E(D(S)[tS]) = d . So

E(D(S)[t]) ≤ 9d loga+1(t + 1)− θt

· [9d loga+1(tS + 1)− d].
(81)

When 0 < a < 1, since for sufficiently large n and thus for
sufficiently large t ,
[

1+ 1

2(t − 1) loga t

]
· 9d log2a t − 9d log2a(t + 1)

= 9d loga t

2(t − 1)
− 9d · [log2a(t + 1)− log2a t]

≥ 9d loga t

2(t − 1)
− d loga t

2t

≥ 4d loga t

t
, (82)

where the first inequality follows from the fact that log(t +
1)− log t = log

(
1+ 1

t

) ≤ 1
t and a < 1,

lim
t→∞

log2a(t + 1)− log2a t
loga t

t

= lim
t→∞ t ·

[
loga(t + 1)

loga t
− 1

]
· (loga(t + 1)+ loga t)

≤ lim
t→∞ t ·

[
log(t + 1)

log t
− 1

]
· (loga(t + 1)+ loga t)

≤ lim
t→∞ t · log(t + 1)− log t

log t
· 2 loga(t + 1)

≤ lim
t→∞

2 loga(t + 1)

log t
= 0.

Applying Inequality (82) to (79), we have

E(D(S)[t])+ 9d log2a(t + 1)

≤
[

1+ 1

2(t − 1) loga t

]
· (E(D(S)[t − 1])+ 9d log2a t).

Recursively, we have that

E(D(S)[t])
≤ θt · [E(D(S)[tS])+ 9d log2a(tS + 1)] − 9d log2a(t + 1)

holds for all tS < t ≤ n, and so

E(D(S)[t])
≤ θt · (9d log2a(tS + 1)+ d)− 9d log2a(t + 1). (83)

Note that by the construction of G,

E(gS) =
n∑

t=tS

1

loga t
· E(D(S)[t])

2d(t − 1)
· d

=
n∑

t=tS

1

loga t
· E(D(S)[t])

2(t − 1)
. (84)

Next, we will bound E(gS) by using Inequalities (81) and (83)
for different values of a.

When a ≥ 1, we have

E(gS) ≤
n∑

t=tS

9d loga+1(t + 1)− θt · [9d loga+1(tS + 1)− d]
2(t − 1) loga t

.
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Since θt > 1, for sufficient large n, we have

E(gS)

≤
n∑

t=tS

9d loga+1(t + 1)− [9d loga+1(tS + 1)− d]
2(t − 1) loga t

= 9d

2

[
n∑

t=tS

log t

t − 1
−
[

loga+1(tS + 1)− 1

9

]

·
n∑

t=tS

1

(t − 1) loga t

]

≤ 5d ·
(∫ n

tS

log x

x
dx − loga+1 tS

∫ n

tS

1

x loga x
dx

)
.

If a > 1, then

E(gS)

≤ 5d ·
[

1

2
(log2 n − log2 tS)− loga+1 tS

1− a

·(log1−a n − log1−a tS)
]

= 5d log2 n ·
[

1

2
−
(

1

2
+ 1

a − 1

)(
log tS

log n

)2

+ 1

a − 1

(
log tS

log n

)a+1
]

= 5d log2 n ·
[

1

2
− a + 1

2(a − 1)

(
1− b log log n

log n

)2

+ 1

a − 1

(
1− b log log n

log n

)a+1
]

.

By Fact 73,
(

1− b log log n

log n

)a+1

≤ 1− (a + 1)b log log n

log n
+ (a + 1)ab2(log log n)2

2 log2 n
.

Thus,

E(gS)

≤ 5d log2 n ·
[

1

2
− a + 1

2(a−1)

(
1− 2b log log n

log n
+ b2(log log n)2

log2 n

)

+ 1

a−1

(
1− (a+1)b log log n

log n
+ (a+1)ab2(log log n)2

2 log2 n

)]

= 5

2
db2(a + 1)(log log n)2.

(4) (i) follows.
If a = 1, then

E(gS)

≤ 5d ·
(∫ n

tS

log x

x
dx − log2 tS

∫ n

tS

1

x log x
dx

)

= 5d

[
1

2
(log2 n − log2 tS)− log2 tS · (log log n − log log tS)

]

= 5d

[
1

2
(log2 n − log2 tS)− log2 tS

· log

(
1+ b log log n

log n − b log log n

)]

≤ 5d

[
1

2
(log2 n − log2 tS)− log2 tS · b log log n

log n

]

= 5d

[
1

2
log2 n − 1

2
(log n − b log log n)2

−(log n − b log log n)2 · b log log n

log n

]

= 5d

[
3

2
b2(log log n)2 − (b log log n)3

log n

]

≤ 8db2(log log n)2.

(4) (ii) follows.
When a < 1, applying Inequality (83) to (84), we have

E(gS)

≤
n∑

t=tS

θt · (9d log2a(tS + 1)+ d)− 9d log2a(t + 1)

2(t − 1) loga t

≤ 9d

2
·
[

n∑

t=tS

θn log2a tS

(t − 1) loga t
−

n∑

t=tS

log2a(t + 1)

(t − 1) loga t

]

= 9d

2
·
(

θn log2a tS ·
∫ n

tS

1

x loga x
dx

−
∫ n

tS

logax

x
dx

)
+ O

(
1

n

)

= 9d

2
·
(

θn log2a tS · log1−a n − log1−a tS

1− a

− log1+a n − log1+a tS

1+ a

)
+ O

(
1

n

)

= 9dθn

2(1− a)
log1−a n log2a tS − 9d

2

(
θn

1− a
− 1

1+ a

)

· log1+a tS − 9d

2(1+ a)
log1+a n + O

(
1

n

)

= 9dθn

2(1− a)
log1+a n

(
1− b log log n

log n

)2a

−9d

2

(
θn

1− a
− 1

1+ a

)
log1+a n ·

(
1− b log log n

log n

)1+a

− 9d

2(1+ a)
log1+a n + O

(
1

n

)

= 9dθn

2(1− a)
log1+a n ·

[
1− 2ab log log n

log n
+ 2a(2a − 1)

2
(

b log log n

log n

)2

+ O

(
log log n

log n

)3
]
− 9d

2
·

(
θn

1− a
− 1

1+ a

)
log1+a n ·

[
1− (1+ a)b log log n

log n

+ (a + 1)a

2

(
b log log n

log n

)2

+ O

(
log log n

log n

)3
]

− 9d

2(1+ a)
loga+1 n + O

(
1

n

)
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=
[

9dθn

2(1− a)
− 9d

2

(
θn

1− a
− 1

1+ a

)
− 9d

2(1+ a)

]

· log1+a n +
[
− 9d

2(1− a)
· 2ab + 9d

2

(
θn

1− a
− 1

1+ a

)

·(1+ a)b] · loga n log log n + O

[
(log log n)2

log1−a n

]

= 9

2
db(θn − 1) loga n log log n + O

[
(log log n)2

log1−a n

]
.

To deal with the factor (θn − 1), we need the following
lemma.

Lemma 75: For sufficiently large n,

θn − 1 ≤ b log log n

loga n
.

Note that by the above lemma, for sufficiently large n

E(gS) ≤ 9

2
db · b log log n

loga n
loga n log log n + O

[
(log log n)2

log1−a n

]

≤ 5db2(log log n)2,

and hence (4) (iii) follows.
To complete the proof, we prove the lemma, i.e., Lemma 75.

Proof: Recall that

θn =
n∏

i=tS+1

[
1+ 1

2(i − 1) loga i

]
.

Then:

log θn =
n∑

i=tS+1

log

[
1+ 1

2(i − 1) loga i

]

≤
n∑

i=tS+1

1

2(i − 1) loga i

≤ 1

2

∫ n

tS

1

x loga x

= 1

2(1− a)
· (log1−a n − log1−a tS)

= log1−a n

2(1− a)
·
[

1−
(

1− b log log n

log n

)1−a
]

= log1−a n

2(1− a)
·
[
(1− a) · b log log n

log n
− (1− a)(−a)

2

·
(

b log log n

log n

)2

+ O

(
log log n

log n

)3
]

= b log log n

2 loga n
+ O

[
(log log n)2

log1+a n

]
.

Thus, for sufficiently large n, log θn ≤ 3b log log n
4 loga n , which

implies that

θn ≤ (log n)
3b

4 loga n .

A key observation is that, for any constant c, by l’Hôpital’s
rule,

lim
n→∞

(log n)
c

loga n − 1
log log n
loga n

= lim
y→∞

y
c

ya − 1
log y

ya

= lim
y→∞

(
y

c
ya − 1

)′

(
log y

ya

)′

= lim
y→∞

c(1− a log y)

y
1+a− c

ya
· y1+a

1− a log y

= lim
y→∞ c · y c

ya = lim
y→∞ c · e

c log y
ya = c.

Thus, for any ε > 0, if n is large enough, then

θn − 1 ≤ 3b

4
(1+ ε) · log log n

loga n
.

Let ε = 1
3 , then the lemma follows. �

This completes the proof of Theorem 48. �
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[10] D. Bonchev and N. Trinajstić, “Information theory, distance matrix,
and molecular branching,” J. Chem. Phys., vol. 38, no. 10,
pp. 4517–4533, 1977.

[11] S. L. Braunstein, S. Ghosh, and S. Severini, “The Laplacian of a graph
as a density matrix: A basic combinatorial approach to separability of
mixed states,” Ann. Combinat., vol. 10, no. 3, pp. 291–317, 2006.

[12] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
Web search engine,” Comput. Netw. ISDN Syst., vol. 30, nos. 1–7,
pp. 107–117, 1998.

[13] F. P. Brooks, Jr., “Three great challenges for half-century-old computer
science,” J. ACM, vol. 50, no. 1, pp. 25–26, 2003.

[14] H. Chernoff, “A note on an inequality involving the normal distribution,”
Ann. Probab., vol. 9, no. 3, pp. 533–535, 1981.

[15] Y. Choi and W. Szpankowski, “Compression of graphical structures,” in
Proc. IEEE Int. Symp. Inf. Theory, Jun./Jul. 2009, pp. 364–368.

[16] F. Chung and L. Lu, Complex Graphs and Networks. Providence, RI,
USA: AMS, 2006.

[17] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, vol. 70,
no. 6, p. 066111, 2004.

[18] C. Darwin, On the Origin of Species by Means of Natural Selection,
Or, The Preservation of Favoured Races in the Struggle for Life.
London, U.K.: John Murray, 1859.



LI AND PAN: STRUCTURAL INFORMATION AND DYNAMICAL COMPLEXITY OF NETWORKS 3339

[19] M. Dehmer, “Information processing in complex networks: Graph
entropy and information functionals,” Appl. Math. Comput., vol. 201,
pp. 82–94, Jul. 2008.

[20] M. Dehmer and F. Emmert-Streib, “Towards network complexity,”
in Complex Sciences (Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering),
vol. 4, J. Zhou, Ed. Berlin, Germany: Springer, 2009, pp. 707–714.

[21] M. Dehmer and A. Mowshowitz, “A history of graph entropy measures,”
Inf. Sci., vol. 181, no. 1, pp. 57–78, 2011.

[22] P. Erdõs and A. Rényi, “On random graphs I,” Publ. Math. Inst. Hungar.
Acad. Sci., vol. 6, pp. 290–297, 1959.

[23] P. Erdõs and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hungar. Acad. Sci., vol. 5, pp. 17–61, 1960.

[24] A. D. Flaxman, “Expansion and lack thereof in randomly perturbed
graphs,” Internet Math., vol. 4, nos. 2–3, pp. 131–147, 2007.

[25] J. Kleinberg, “The small-world phenomenon: An algorithmic
perspective,” in Proc. 32nd ACM Symp. Theor. Comput., 2000,
pp. 163–170.

[26] E. Konstantinova and A. A. Paleev, “Sensitivity of topological indices
of polycyclic graphs,” Vychisl. Sistemy, vol. 136, pp. 38–48, Jan. 1990.

[27] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
pp. 75–174, Feb. 2010.

[28] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling
the Web for emerging cyber-communities,” in Proc. 8th Int. Conf.
WWW, 1999, pp. 403–416.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal, “Stochastic models for the Web graph,” in Proc.
FOCS, 2000, pp. 57–65.

[30] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explanations,” in
Proc. ACM KDD, 2005, pp. 177–187.

[31] A. Li, “Homophyly/kinship model: Naturally evolving networks,” Sci.
Rep., vol. 5, p. 15140, Oct. 2015.

[32] A. Li, J. Li, and Y. Pan, “Discovering natural communities in networks,”
Phys. A, Statist. Mech. Appl., vol. 436, pp. 878–896, Oct. 2015.

[33] A. Li, X. Li, Y. Pan, and W. Zhang, “Strategies for security of networks,”
Sci. China Inf. Sci., vol. 58, no. 1, pp. 012107-1–012107-14, 2015.

[34] A. Li and Y. Pan, “A theory of network security: Principles of natural
selection and combinatorics,” Internet Math., accepted.

[35] A. Li and P. Peng, “Community structures in classical network models,”
Internet Math., vol. 7, no. 2, pp. 81–106, 2011.

[36] A. Li, X. Yin, and Y. Pan, “Three-dimensional gene map of cancer
cell types: Structural entropy minimisation principle for defining tumour
subtypes,” Sci. Rep., vol. 6, p. 20412, Feb. 2016.

[37] T. Łuczak, “Sparse random graphs with a given degree sequence,” in
Proc. Symp. Random Graphs, Poznan, Poland, 1989, pp. 165–182.

[38] M. Mihail, C. Papadimitriou, and A. Saberi, “On certain connectivity
properties of the Internet topology,” in Proc. 44th Annu. IEEE Symp.
Found. Comput. Sci., Oct. 2003, pp. 28–35.

[39] M. Molloy and B. Reed, “A critical point for random graphs with
a given degree sequence,” Random Struct. Algorithms, vol. 6, nos. 2–3,
pp. 161–180, 1995.

[40] A. Mowshowitz, “Entropy and the complexity of graphs: I. An index of
the relative complexity of a graph,” Bull. Math. Biophys., vol. 30, no. 1,
pp. 175–204, 1968.

[41] C. R. Munteanu, “Markov entropy centrality: Chemical, biological,
crime, and legislative networks,” in Towards an Information Theory of
Complex Networks, M. Dehmer, F. Emmert-Streib, and A. Mehler, Eds.
New York, NY, USA: Springer, 2011, pp. 199–258.

[42] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, 2003.

[43] B. Pittel, “Note on the heights of random recursive trees and
random m-ary search trees,” Random Struct. Algorithms, vol. 5, no. 2,
pp. 337–347, 1994.

[44] N. Rashevsky, “Life, information theory, and topology,” Bull. Math.
Biophys., vol. 17, no. 3, pp. 229–235, 1955.

[45] E. Ravasz and A.-L. Barabási, “Hierarchical organization in complex
networks,” Phys. Rev. E, vol. 67, p. 056104, Feb. 2003.

[46] C. Raychaudhury, S. K. Ray, J. J. Ghosh, and A. B. Basak,
“Discrimination of isomeric structures using information theoretic
topological indices,” J. Comput. Chem., vol. 5, no. 6, pp. 581–588, 1984.

[47] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proc. Nat. Acad. Sci. USA,
vol. 105, no. 4, pp. 1118–1123, 2008.

[48] C. Shannon, “The lattice theory of information,” IEEE Trans. Inf.
Theory, vol. 1, no. 1, pp. 105–107, Feb. 1953.

[49] E. Trucco, “A note on the information content of graphs,” Bull. Math.
Biophys., vol. 18, no. 2, pp. 129–135, 1956.

[50] A. Vázquez, “Growing network with local rules: Preferential
attachment, clustering hierarchy, and degree correlations,” Phys. Rev.
E, vol. 67, p. 026112, May 2005.

[51] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, pp. 440–442, Jun. 1998.

Angsheng Li is a research professor of Institute of Software, Chinese
Academy of Sciences. He was born in 1964. He got bachelor in Mathematics
in Yunnan Normal University in 1984, and ph D in 1993 in Institute of
Software, Chinese Academy of Sciences. He has been working for the Institute
of Software, Chinese Academy of Sciences since 1993 after he finished his
ph D. From 1998 to 2002, he was a visitor and research fellow in the
University of Leeds, UK, working with Professor Barry Cooper (an academic
descendant of Alan Turing) in Computability Theory. In 2003, he was awarded
the Distinguished Young Investigator award of the National Natural Science
Foundation of China. In 2008, he was selected by the Hundred Talent Program
of Chinese Academy of Sciences. From 2008 to 2009, he was a visiting
scientist in Computer Science Department, Cornell University, US, working
with Professor Juris Hartmanis (the founder of Computational Complexity
Theory). His research areas include Computability Theory, Computational
Theory, Network Theory and Information Science. His current interests focus
on network algorithms, and network information theory.

Yicheng Pan is now an assistant professor of Institute of Software, Chinese
Academy of Sciences. He was born in 1983. He got ph D under the
supervision of Prof. Angsheng Li in Institute of Software, Chinese Academy
of Science in 2012. He finished post-doctoral study in Institute of Information
Engineering, Chinese Academy of Sciences in 2015. His research interests
include Computation Complexity, Local Algorithms and Network Theory.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


