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Abstract In MIMO systems, space-time block code (STBC) is good solution for improving
system performance. Among the STBCs, coordinate interleaved orthogonal designs (CIODs)
combined with QR-decomposition-based decision-feedback decoding (QR-DDF) allow
achieving good performance for time-selective fading channels. However, half of entries
in codeword matrix of CIODs are zeros. These zero entries result in high peak-to-average
power ratio (PAPR) and also impose a severe constraint on hardware implementation of the
code when turning off some of the transmitting antennas whenever a zero is transmitted.
In this paper, we propose a new design of space-time block codes without zero entry in
codeword matrix (NZE-STBCs) for time-selective fading channels. The main advantage of
the proposed NZE-STBCs is that its peak-to-average ratio (PAPR) is 3 dB lower than that of
CIODs, and its hardware implementation is also easier due to eliminating on-off switchers
without sacrificing performance. Moreover, similar as CIODs, the proposed NZE-STBCs
can use low complexity QR-DDF decoder over time-selective fading channels to enhance
performance and reduce decoding complexity. Simulation results show that the proposed
NZE-STBCs outperform CIODs for three transmit antennas while performing the same for
two and four transmit antennas.
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1 Introduction

Space-time coding is an effective approach to achieve transmit diversity in multiple-input
multiple-output (MIMO) systems [1]. Orthogonal space-time block codes (OSTBCs) [2,3]
attain full diversity with single-symbol maximum likelihood (SML) decoder, but they suffer
a rate loss when there are more than two transmit antennas. For example, the rate of OSTBCs
is 1 (full rate) for two transmit antennas and 3/4 for three and four transmit antennas. By
relaxing the orthogonal constraint to enable full rate, quasi-orthogonal STBCs (QOSTBCs)
for four transmit antennas were proposed independently in researches [4–6]. These full rate
QOSTBCs have two drawbacks: (1) they are not full diversity so their performance becomes
worse than that of OSTBCs at high signal-to-noise regime; (2) they require pair-wise com-
plex symbol maximum likelihood (PML) decoder. The first drawback can be eliminated by
constellation rotation. For example, QOSTBCs with constellation rotation (QOSTBCs-CR)
were proposed in researches [7,8]. While these QOSTBCs-CR outperform OSTBCs at all
signal-to-noise values for four transmit antennas, they still require high complexity PML
decoder.

To eliminate the drawback of QOSTBCs-CR, Khan et al. [9,10] proposed CIODs which
achieve full diversity and full rate for two, three and four transmit antennas with single-symbol
maximum likelihood (SML) decoding. In this paper, we call STBCs that requires only low
complexity SML decoder are single-symbol decodable space-time block codes (SSDCs).
However, codeword matrix of CIODs contains many zeros. Reducing the number of zeros in
codeword matrix is important for many reasons, namely the improvement in PAPR and also
the ease of practical implementation of these codes in wireless communication systems [11].
To forward this problem, QOSTBCs with minimum decoding complexity (MDC-QOSTBC)
were proposed by Yuen et al. [12], Wang et al. [13] and Sinnokrot et al. [14].

When the quasi-static channel conditions are not satisfied (i.e., the channel is time-
selective), performance of all above SSDCs (included CIODs and MDC-QOSTBCs) will
be decreased, even appear error floor at high signal-to-noise ratios, if low complexity SML
decoder is used. However, if we use conventional ML decoder then decoding complexity
is extremely high (especially for high order modulations). To solve this problem, Hoo-Jin
Lee [15] proposed QR-DDF decoder for CIODs. The QR-DDF decoder allows overcoming
the detrimental effect of the time-selectivity of fading channels and improving decoding
performance. Moreover, complexity of the QR-DDF decoder is comparable with that of low
complexity SML decoder and much lower than that of conventional ML decoder [15]. Unfor-
tunately, the QR-DDF decoder only can apply to CIODs [10] thanks to especial structure of
CIODs, but can not apply to MDC-QOSTBCs [12–14]. This is reason that motivates us to
find NZE-STBCs which work well with low complexity SML and QR-DDF decoders over
the both quasi-static and time-selective fading channels.

In this paper, we propose a general structure to design new NZE-STBCs from CIODs.
Then, we demonstrate that proposed NZE-STBCs have all desirable properties of CIODs such
as: achieve full rate and full diversity with SML decoder over quasi-static fading channel,
have good performance with QR-DDF decoder over time-selective fading channel. Moreover,
by eliminating completely “zero-symbols” in codeword matrix, the proposed NZE-STBCs
have lower PAPR of 3-dB and reduce difficult in hardware implementation in comparison to
CIODs. We also provide simulation results in the both quasi-static and time-selective fading
channels to demonstrate that advantage of the proposed NZE-STBCs over CIODs do not come
with sacrificing the decoding performance. In addition, when number of transmit antenna is
odd (i.e., for three transmit antennas) then performance of the proposed NZE-STBC is better
1.23-dB than that of CIODs.
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We use the following notations throughout this letter. The superscripts (·)∗, (·)T and (·)H,
respectively denote the conjugate, transpose and conjugate transpose operations. Bold-faced
letters such as s and S represent vectors and matrices. det( A) is the determinant of matrix A.
E[·] is reserved for expectation with respect to all the random variables within the braces.

2 Backgrounds

2.1 Channel Model

We consider an uncorrelated multiple-input single-output (MIMO) system with NT transmit
antennas (Tx) and NR receive antennas (Rx). A STBC encodes an input symbol vector of
length K , u = [u1 u2. . . uK ]T, into an L × NT matrix S, where L is the number of time
slots. Symbol rate of the STBC S is K / L . if K = L then S called full-rate code. The received
signal at k-th receive antenna at t-th time slot rk(t) is given by

rk(t) =
NT∑

i=1

hki (t)sti + nk(t) (1)

where hki (t) and nk(t) denote path gain from i-th transmit antenna to k-th receive antenna
and noise at t-th time slot, respectively. sti denotes transmitted signal on i-th transmit antenna
at t-th time slot.

In this letter, we make the following assumptions about the channel model (1): white
Gaussian noise, so that nt is a zero-mean circularly symmetric complex Gaussian ran-
dom variable satisfying E

[
nk(t)n∗

k (t)
] = N0; spatially symmetric Rayleigh fading, so

that, hki (t) is identically distributed, zero-mean unit-variance circularly symmetric com-
plex jointly Gaussian random variables satisfying E

[|hki (t)|2
] = 1; sufficient antenna

spacing, so that E
[
hki (·)h∗

kl(·)
] = 0 if i �= l; relaxing this constraint would be pos-

sible, but it would complicate the analysis and it would detract from our main aim of
studying the impact of time variations; temporally symmetric Rayleigh fading, so that the
correlation ρ(m) between hki (t) and hki (t + m) is the same for ∀i = 1, .., NT , namely
E
[
hki (t)h∗

ki (t + m)
] = E

[
hkl(t)h∗

kl(t + m)
] = ρ(m) ∀i, l; perfect knowledge of hki (t)

at the receiver.
According to Jakes’model [16], we have ρ(m) = J0(2πm fd Ts) where J0(·) is the zero-

order Bessel function of the first kind, fd is the maximum Doppler shift and Ts is the period
of each symbol. If fd Ts = 0 we obtain quasi-static fading channel model, else we obtain
time-selective fading channel model.

The PAPR for the m-th transmit antenna of a space-time code is [17]:

PAPRm = maxt∈{1,...,L} |stm |2
L−1

∑
t∈{1,...,L} E

(∣∣|stm |2∣∣) (2)

where the maximum and the expectation operators are taken over all possible codeword
matrices. In all the space-time codes considered in this paper, the PAPR is the same for all
the antennas, so that the subscript on PAPR in (2) may be dropped.

2.2 Structure of CIODs

From [9,10], the encoding procedure of CIODs is summarized as follows.
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1. Information bits are mapped into complex information data symbols xi = xi I +jxi Q, i =
1, . . ., K from a constellation A, where xi I and xi Q are real-part and image-part of
complex signal xi , respectively.

2. The mapped complex symbols xi are rotated by θ to generate intermediate sym-

bols ui , such that ui ∈ Ae jθ , which can be easily generated by

[
ui I

ui Q

]
=

[
cos θ sin θ

− sin θ cos θ

] [
xi I

xi Q

]
. For a square lattice constellation (e.g., square M-QAM), the

optimum phase rotation is given as θ = 31.7175◦, which maximizes coding gain defined
by [9,10].

The transmitted complex symbols si are generated by coordinate interleaving as si =
ui I + ju〈i+K 〉K Q, i = 1, . . ., K . Then transmitted complex symbols si are encoded yield
CIODS for 2, 3 and 4 Tx (where S3 is obtained by deleting the last column of S4) as:

S2 (s1, s2) =
[

s1 0
0 s2

]
; S3 (s1, s2, s3, s4) =

⎡

⎢⎢⎣

s1 s2 0
−s∗

2 s∗
1 0

0 0 s3

0 0 −s∗
4

⎤

⎥⎥⎦ ;

S4 (s1, s2, s3, s4) =

⎡

⎢⎢⎣

s1 s2 0 0
−s∗

2 s∗
1 0 0

0 0 s3 s4

0 0 −s∗
4 s∗

3

⎤

⎥⎥⎦ (3)

It is clear that a half of transmitted signals of CIODs in (3) are zeros. This results in high
PAPR and increasing complexity in hardware implementation. In next section we propose
new full rate STBCs where zeros are eliminated completely.

2.3 The Low Complexity SML Decoder and QR-DDF Decoder for CIODs

In this sub-section we summarize low complexity SML and DDF decoding methods for
CIODs which presented in [15].

2.3.1 The SML Decoder

We consider to CIOD S4 with NT = 4 given in (3). After some straightforward manipulations
of channel model (1), the received signal of CIOD can be expressed in vector/matrix form as

r = Hs + v (4)

where r is 4NR×1 received signal vector, s = [s1 s2 s3 s4]T is transmitted signal vector,

v is 4NR × 1 AWGN noise vector and H =
[
HT

1 , HT
2 , . . . , HT

NR

]T
is the effective channel

matrix, for instance, whose sub-matrix Hn, n = 1, 2, . . ., NR for CIOD with NT = 4 is
given by

Hn =

⎡

⎢⎢⎣

hn1(1) hn2(1) 0 0
h∗

n2(2) −h∗
n1(2) 0 0

0 0 hn3(3) hn4(3)

0 0 h∗
n4(4) −h∗

n3(4)

⎤

⎥⎥⎦ (5)
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where the index inside (·) is the discrete time index with respect to the symbol time duration in
each codeword period. After channel-matched filtering operation by HH to obtain sufficient
statistics for detection at the receiver, we obtain

⎡

⎢⎢⎣

y (1)

y (2)

y (3)

y (4)

⎤

⎥⎥⎦

︸ ︷︷ ︸
y=HHr

=

⎡

⎢⎢⎣

α1 ε1 0 0
ε∗

1 α2 0 0
0 0 β1 ε2

0 0 ε∗
2 β2

⎤

⎥⎥⎦

︸ ︷︷ ︸
G=HHH

⎡

⎢⎢⎣

s1

s2

s3

s4

⎤

⎥⎥⎦

︸ ︷︷ ︸
s

+

⎡

⎢⎢⎣

v1

v2

v3

v4

⎤

⎥⎥⎦

︸ ︷︷ ︸
v̄=HHv

(6)

where

α1 =
NR∑

n=1

|hn1 (1)|2 + |hn2 (2)|2; α2 =
NR∑

n=1

|hn1 (2)|2 + |hn2 (1)|2 (7)

β1 =
NR∑

n=1

|hn3 (3)|2 + |hn4 (4)|2;β2 =
NR∑

n=1

|hn3 (4)|2 + |hn4 (3)|2 (8)

ε1 =
NR∑

n=1

h∗
n1 (1) hn2 (1) − h∗

n1 (2) hn2 (2) ; ε2 =
NR∑

n=1

h∗
n3 (3) hn4 (3) − h∗

n3 (4) hn4 (4)

(9)

When the channel is quasi-static, H is orthogonal (i.e., the Grammian matrix G is diagonal)
with α1 = α2 = α, β1 = β2 = β and ε1 = ε2 = 0. Then, by separating and rearranging
the in-phase and quadrature-phase components of y(t), we have the following ML decision
metrics

ûi = arg min
û∈Ae jθ

[
β
∣∣yI (i) − αû I

∣∣2 + α
∣∣yQ (i + 2) − βûQ

∣∣2
]
, i = 1, 2; (10)

ûi = arg min
û∈Ae jθ

[
α
∣∣yI (i) − βû I

∣∣2 + β
∣∣yQ (i − 2) − αûQ

∣∣2
]
, i = 3, 4; (11)

The above two ML decision metrics reveal that the variables are completely decoupled, so
that full-rate transmission and SML decoding are fulfilled at the receiver.

2.3.2 The QR-DDF Decoder

When the channel is time-selective, H is non-orthogonal (i.e., the Grammian matrix G is
not diagonal) and the off-diagonal terms ε1 and ε2 are not zero, which introduces interfer-
ence between consecutive symbols. Thus, the above SML decoder suffers from performance
degradation. In this case, the low complexity QR-DDF decoder is applied [15]. The firstly,
we perform a QR-decomposition of the channel matrix H in (4) as

H = QR (12)

where the 4NR × 4 matrix Q is unitary (i.e., QH Q = I4×4) and the 4×4 matrix R is upper
triangular with real diagonal elements. Then, by multiplying the received vector r by QH ,
we obtain

ȳ = QHr = Rs + ν̄ (13)
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where ν̄ = QHν has the same statistical properties as v due to the property of the unitary
matrix Q, and the upper triangular matrix R is given by

R =

⎡

⎢⎢⎣

a11 a12 0 0
0 a22 0 0
0 0 a33 a34

0 0 0 a44

⎤

⎥⎥⎦ (14)

From the above peculiar structure of R, u2 and u4 (i.e., ultimately x2 and x4) can be directly
decoded without considering the interference caused by the other transmitted symbols (i.e.,
x1 and x3) as

û2 = arg min
û∈Ae jθ

[∣∣ȳI (2) − a22û I
∣∣2 + ∣∣ȳQ (4) − a44ûQ

∣∣2
]

(15)

û4 = arg min
ŝ∈Ae jθ

[∣∣ȳI (4) − a44û I
∣∣2 + ∣∣ȳQ (2) − a22ûQ

∣∣2
]

(16)

Accordingly, after re-interleaving the in-phase and quadrature components of û2 and û4, the
decision statistics for s1 and s3 are obtained as

ỹ (1) = ȳ (1) − a12
(
ŝ2I + j ŝ4Q

)
(17)

ỹ (3) = ȳ (3) − a34
(
ŝ4I + j ŝ2Q

)
(18)

Therefore, the estimates of u1 and u3 can be obtained from the following decision metrics as

û1 = arg min
û∈Ae jθ

[∣∣ỹI (1) − a11û I
∣∣2 + ∣∣ỹQ (3) − a33ûQ

∣∣2
]

(19)

û3 = arg min
û∈Ae jθ

[∣∣ỹI (3) − a33û I
∣∣2 + ∣∣ỹQ (1) − a11ûQ

∣∣2
]

(20)

Although SML and QR-DDF decoders are presented for the CIOD with NT = 4(i.e., S4), but
they can be directly applied for the CIOD with NT = 3(i.e., S3) over quasi-static and time-
selective fading channels. Moreover, the CIOD with N = 2(i.e., S2) achieves full-diversity
even in time-selective fading channels, so the SML decoder can be employed regardless of
the time-selectivity of fading channels.

Remark 1 As showed in [15], the decoding complexity of each decoder is linearly propor-
tional to the constellation size M , and the decoding complexity of the QR-DDF decoder is
comparable to that of the conventional SML decoder.

Remark 2 For other single-symbol ML decodable STBCs as MDC-QOSTBCs [12–14], their
upper triangular matrix R, which achieved from QR-decomposition of their equivalent chan-
nel matrix H, has form

R =

⎡

⎢⎢⎣

a11 a12 a13 a4

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎤

⎥⎥⎦ (21)
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Comparing (21) and (14) we can see that low complexity QR-DDF decoder can not use for
MDC-QOSTBCs.

3 The Proposed NZE-STBCs and Their Properties

3.1 The Proposed NZE-STBCs

From (3), we can see that CIODs for 2 and 4 transmit antennas have the same structure

[
A 0
0 B

]
,

where A, B is matrix of Alamouti code [2]. To eliminate completely zeros in codeword matrix

of CIODs, we propose a new structure

[
A A
–B B

]
to design NZE-STBCs from CIODs. Based

on the structure

[
A A
–B B

]
and CIODs (3) we propose NZE-STBCs for 2, 3 and 4 Tx as:

Z2(s1, s2) = 1√
2

[
s1 s1

−s2 s2

]
(22a)

Z3(s1, s2, s3, s4) = 1√
2

⎡

⎢⎢⎣

s1 s2 s1

−s∗
2 s∗

1 −s∗
2−s3 −s4 s3

s∗
4 −s∗

3 −s∗
4

⎤

⎥⎥⎦ (22b)

Z4(s1, s2, s3, s4) = 1√
2

⎡

⎢⎢⎣

s1 s2 s1 s2

−s∗
2 s∗

1 −s∗
2 s∗

1−s3 −s4 s3 s4

s∗
4 −s∗

3 −s∗
4 s∗

3

⎤

⎥⎥⎦ (22c)

where Z3 is obtained by deleting the last column of Z4, transmitted signals si in NZE-STBCs
(22a, 22b, 22c) are similar as transmitted signals si in CIODs (3). The factor 1√

2
ensures total

power on each transmit antenna of the both CIODs and our NZE-STBCs is the same, i.e.,
E
{‖Si‖2

F

} = E
{‖Zi‖2

F

}
, i = 2, 3, 4.

Remark 3 It is a worth to notice that, the structure

[A A
−B B

]
also can apply to reduce zero

entries for all CIODs [10] for arbitrary number of transmit antennas. However, in this paper
we only consider to full rate CIODs. Thus, other CIODs are out of scope of this chapter.

3.2 Properties of the Proposed NZE-STBCs

3.2.1 Full Rate and Full Diversity

Theorem 1 The proposed NZE-STBCs for 3 and 4 transmit antennas are full-rate full-
diversity codes in quasi-static fading channels while the NZE-STBC for 2 transmit antennas
is full-rate full-diversity code in the both quasi-static and time-selective fading channels.

Proof It is easily to see that the proposed NZE-STBCs are full-rate codes. In order to meet
the full-diversity criterion, the codeword difference matrix B = C−C′ should be of full-rank
(i.e., det(BHB) is non-zero) [1], where C and C′ are two distinct codeword matrices obtained
from a STBC C. From (3) and (22a, 22b, 22c), we obtain
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det
((

Z2 − Z′
2

)H (Z2 − Z′
2

)) = det
((

S2 − S′
2

)H (Z2 − S′
2

)) = �2
1�

2
2 (23)

det
((

Z4 − Z′
4

)H (Z4 − Z′
4

)) = det
((

Z4 − S′
4

)H (Z4 − S′
4

)) = (�2
1 + �2

2

)2 (
�2

3 + �2
4

)2

(24)

where �2
i = ∣∣si − s′

i

∣∣2 , i = 1, 2, 3, 4. �
Equations (23) and (24) demonstrate that NZE-STBCs Z2, Z4 and CIODs S2, S4 have the

same coding gain under the same conditions. This means that NZE-STBCs Z2, Z4 are full
diversity codes and have the same coding gain with CIODs S2, S4. For the NZE-STBC Z3

in (22a, 22b, 22c), we have

det
((

Z3 − Z′
3

)H (Z3 − Z′
3

))

= 1

2

(
�2

1 + �2
2

) (
�2

3 + �2
4

) (
�2

1 + �2
2 + �2

3 + �2
4

)

= 1

2

{(
u1I − u′

1I

)2 + (u3Q − u′
3Q

)2 + (u2I − u′
2I

)2 + (u4Q − u′
4Q

)2}

×
{(

u3I − u′
3I

)2 + (u1Q − u′
1Q

)2 + (u4I − u′
4I

)2 + (u2Q − u′
2Q

)2}

×

⎧
⎪⎨

⎪⎩

(
u1I − u′

1I

)2 +
(

u3Q − u′
3Q

)2 + (u2I − u′
2I

)2 +
(

u4Q − u′
4Q

)2 + · · ·
(
u3I − u′

3I

)2 +
(

u1Q − u′
1Q

)2 + (u4I − u′
4I

)2 +
(

u2Q − u′
2Q

)2

⎫
⎪⎬

⎪⎭

(25)

Clearly, the above determinant is minimum if and only if uk differs from u′
k for only one k.

Therefore assume, without loss of generality, that the codeword matrices Z3 and Z′
3 are such

that they differ by only one variable, say u1 taking different values from the rotated signal
setÃ = Ae jθ . Then,

det
((

Z3 − Z′
3

)H (Z3 − Z′
3

)) = (u1I − u′
1I

)2 (
u1Q − u′

1Q

)2
(
u1I − u′

1I

)2 +
(

u1Q − u′
1Q

)2

2
(26)

From (26) we obtain

min
u1 �=u′

1

det
((

Z3 − Z′
3

)H (Z3 − Z′
3

))

= min
u1 �=u′

1

⎛

⎜⎝
(
u1I − u′

1I

)2 (
u1Q − u′

1Q

)2
(
u1I − u′

1I

)2 +
(

u1Q − u′
1Q

)2

2

⎞

⎟⎠

≥ min
u1 �=u′

1

{(∣∣u1I − u′
1I

∣∣ ∣∣u1Q − u′
1Q

∣∣)3
}

= (CPD
(Ã))3 (27)

Here, the metric minxk �=x ′
k∈A

∣∣xk I − x ′
k I

∣∣
∣∣∣xk Q − x ′

k Q

∣∣∣ is called the co-ordinate product dis-

tance (CPD) of A and denoted as CPD(A) [10]. From the Eq. (27) it is clear that the
NZE-STBC Z3 will give full-diversity if and only if the CPD of the signal set is nonzero.
Research results in [10] showed that a rotated constellationÃ = Ae jθ always ensures non-
zero CPD

(Ã). Therefore, the NZE-STBC Z3 is full diversity code.
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Finally, to complete proof of Theorem 1, we need demonstrate that the NZE-STBC
Z2 achieves full diversity over time-selective fading channels. In [10], authors also show
that a STBC achieve full-diversity in time-selective fading channels if its extended code-
word difference matrix is full rank. For Z2, its extended codeword matrix (ExCM) is

Z2 =
[

s1 s1 0 0
0 0 −s2 s2

]
and the difference of two distinct ExCM Z2 is B2 = Z2 − Z

′
2 =

[
s1 − s′

1 s1 − s′
1 0 0

0 0 −s2 + s′
2 s2 − s′

2

]
. It is easily to demonstrate that the optimum phase

rotation, which makes codeword difference matrix B2 = S2 − S2′ full rank, makes B2 full
rank, so Z2 is full diversity code in time-selective fading channels. The proof is completed.

3.2.2 Low Complexity Decoding

In this sub-section we will show that low complexity SML and QR-DDF decoders which are
applied for CIODs, also can apply for the proposed NZE-STBCs. We consider to the NZE-
STBC Z4 with NT = 4 given in (22a, 22b, 22c). After some straightforward manipulations
of (1), the received signal of the NZE-STBC Z4 can be expressed in vector/matrix form as

r = Hs + ν (28)

where r is 4NR × 1 received signal vector, s = [s1s2s3s4]T is transmitted signal vector, v

is 4NR × 1 AWGN noise vector and H =
[
HT

1 , HT
2 , . . . , HT

NR

]T
is the effective channel

matrix, for instance, whose sub-matrix Hn, n = 1, 2, . . ., NR for the NZE-STBC with NT =
4 is given by

Hn = 1√
2

⎡

⎢⎢⎣

hn1 (1)+hn3 (1) hn2 (1) + hn4 (1) 0 0
h∗

n2 (2) + h∗
n4 (2) −h∗

n1 (2) − h∗
n3 (2) 0 0

0 0 hn3 (3) − hn1 (3) hn4 (3) − hn2 (3)

0 0 h∗
n4 (4) − h∗

n2 (4) −h∗
n3 (4) + h∗

n1 (4)

⎤

⎥⎥⎦

�=

⎡

⎢⎢⎣

cn1 (1) cn2 (1) 0 0
c∗

n2 (2) −c∗
n1 (2) 0 0

0 0 cn3 (3) cn4 (3)

0 0 c∗
n4 (4) −c∗

n3 (4)

⎤

⎥⎥⎦ (29)

From (5) and (29) we see that the effective channel matrixes of CIODs and NZE-STBCs
have the same structure. Therefore, low complexity SML and QR-DDF decoders can apply
to the proposed NZE-STBCs without sacrificing decoding performance

4 Performance Comparisons

As demonstrated by Hoo-Jin Lee in Ref. [15] (Section 5.2.3, pp. 98–104), the performance of
existing QOSTBCs with pair-wise symbol maximum likelihood decoder is worse than that
of CIODs with QR-DDF decoder. So, we only perform comparing performance between the
proposed NZE-STBC with CIODs and we feel that comparing with existing QOSTBCs is
not necessary.

It has been shown in [1] that the performance of a space-time code can be optimized by
maximizing the minimum determinant of the codeword distance matrix (i.e., coding gain).
For practical implementation, it has further been pointed out in [11] that the probability P0

that an antenna transmits the “zero” symbol, should be kept as low as possible, to achieve a
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Table 1 Comparisons between CIODs and the proposed NZE-STBCs with 4QAM modulation

Optimum constellation
angle (◦)

Minimum
determinant

P0 (%) PAPR (dB)

For 2 Tx

CIOD 31.7175 3.20 50 5.79

Proposed NZE-STBC 31.7175 3.20 0 2.79

For 3 Tx

CIOD 31.7175 3.53 50 5.79

Proposed NZE-STBC 31.7175 6.40 0 2.79

For 4 Tx

CIOD 31.7175 10.24 50 5.79

Proposed NZE-STBC 31.7175 10.24 0 2.79
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Fig. 1 Comparison of BER performance between the CIODs [10] and proposed NZE-STBCs under average
power constraint over quasi-static flat Rayleigh fading channel with parameters: one receive antenna, rotated
4QAM constellation with rotation phase θ = 31.7175◦, and the SML decoding

low PAPR. The optimum constellation-rotation angle, minimum determinant (coding gain),
and P0 values of CIODs and our NZE-STBC with 4-QAM constellation are compared in
Table 1, while their bit error rates (BER) under average power constrain are compared in
Figs. 1 and 2.

From Table 1 and Figs. 1 and 2, we can observe that, for cases of 2 and 4 transmit antennas,
although they have almost identical decoding performance, our proposed NZE-STBC does
not require any transmit antenna to transmit zero (hence, achieving the ideal value of P0 = 0),
while CIODs requires half of the transmit antennas to transmit zero at any one time (hence
P0 = 50 %). Eliminating zero-entries in the proposed NZE-STBCs results in two advantages
over CIOD codes:
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Fig. 2 Comparison of BER performance between the CIODs [10] and proposed NZE-STBCs under average
power constraint over time-selective flat Rayleigh fading channel with parameters: normalized Doppler fre-
quency shift fd Ts = 0.03, one receive antenna, rotated 4QAM constellation with rotation phase θ = 31.7175◦,
and the QR-DDF decoding
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Fig. 3 Comparison of BER performance between the CIODs [10] and proposed NZE-STBCs under peak
power constraint over time-selective flat Rayleigh fading channel with parameters: normalized Doppler fre-
quency shift fd Ts = 0.03, one receive antenna, rotated 4QAM constellation with rotation phase θ = 31.7175◦,
and the QR-DDF decoding

� The first advantage is eliminating low-frequency interferences. Because, the regular trans-
mission of “zeros” implies turning off the transmit antennas at regular intervals. This leads
to undesirable low-frequency interference.
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� The second advantage is achieving lower PAPR of 3 dB. The PAPR is an important
property of a space-time block code. High PAPR requires a power amplifier with high
power consumption and a large back off; such an amplifier is inefficient, bulky and
expensive.

For case of three transmit antennas, these results show that our proposed NZE-STBC not
only achieve lower PAPR of 3-dB, but also has a higher minimum determinant (hence lower
BER) than CIODs. Therefore, our proposed NZE-STBCs are more effective than CIODs
in practical implementation. Similar results can be found for different constellations with
different number of receive antennas; details are omitted for brevity.

Figure 3 presents simulation results under peak power constraint. The simulation results
show that the proposed code under peak power constraint has a significant performance gain
of 3 dB compared with CIODs.

5 Conclusions

We have provided a general structure

[
A A
−B B

]
to construct NZE-STBCs for 2, 3 and 4

transmit antennas from CIODs. The proposed NZE-STBCs have all desirable properties of
CIODs, such as full-rate and low decoding complexity over the both quasi-static and time-
selective fading channels. Compared with CIODs, the proposed NZE-STBCs have a better
power-distribution property as it does not require any transmit antenna to be turned off.
Simulation results demonstrated that, the advantage of the proposed NZE-STBCs do not
come with sacrificing decoding performance. In addition, NZE-STBC has better decoding
performance than CIODs for three transmit antennas. Therefore, the proposed NZE-STBCs
are better solutions than the CIODs in practical implementation. Moreover, the proposed

structure

[
A A
−B B

]
also can be applied to generate SSDCs which have less zeros from

CIODs when number of transmit antenna is greater than four.
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