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We study analytically and numerically an optical analog of tachyon condensation in amplifying plasmonic
arrays. Optical propagation is modeled through coupled-mode equations, which in the continuous limit can be
converted into a nonlinear one-dimensional Dirac-like equation for fermionic particles with imaginary mass,
i.e., fermionic tachyons. We demonstrate that the vacuum state is unstable and acquires an expectation value
with broken chiral symmetry, corresponding to the homogeneous nonlinear stationary solution of the system.
The quantum field theory analog of this process is the condensation of unstable fermionic tachyons into massive
particles. This paves the way for using amplifying plasmonic arrays as a classical laboratory for spontaneous
symmetry breaking effects in quantum field theory.
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I. INTRODUCTION

Photonic crystals and their one-dimensional realizations—
waveguide arrays (WAs)—have been extensively studied in
order to mimic the nonrelativistic dynamics of quantum parti-
cles in periodic potentials [1–3]. In this respect, WAs constitute
a useful classical laboratory for simulating quantum effects
and can be used either to analyze well-known fundamental
mechanisms such as Bloch oscillations [4], Zener tunneling
[5,6], optical dynamical localization [7], and Anderson local-
ization in disordered lattices [8], or even possibly uncover
novel quantum effects. The thorough correspondence between
the Schrödinger equation for the quantum wave function and
the paraxial equation for the optical field is the key that makes
it possible to establish a precise quantum-optical analogy.
Similarly, it is possible to mimic relativistic phenomena of
quantum field theories in binary waveguide arrays (BWAs),
since optical propagation in the continuous limit is governed by
a (1 + 1)-dimensional Dirac equation [9]. Several mechanisms
such as Klein tunneling [10], Zitterbewegung [11], Klein
paradox [12], and fermion pair production [13] have been
observed in BWAs. Analytical soliton solutions of the discrete
coupled-mode equations (CMEs) for a BWA, constituting the
optical analog of the (1+1)-dimensional nonlinear relativistic
Dirac equation, have been recently reported [14]. Although
there is no evidence of fundamental nonlinearities in quantum
field theory (QFT), the nonlinear Dirac equation has consti-
tuted a matter of study for a long time and it has been used
as an effective theory in atomic [15], nuclear and gravitational
physics [16] and in the study of ultracold atoms [17]. An
intriguing mechanism arising in quantum field theories is
represented by tachyon condensation [18]. This is a process
in particle physics where the system lowers its energy by
spontaneously generating particles. The tachyonic field with
complex mass is unstable and acquires a vacuum expectation
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value reaching the minimum of the potential energy and getting
a non-negative squared mass. This mechanism is intimately
related to the process of spontaneous symmetry breaking,
i.e., the spontaneous collapse of a system into solutions that
violate one or more symmetries of the governing equation,
which in other contexts is responsible for the existence of
Higgs bosons [19], Nambu-Goldstone bosons [20,21], and
fermions [22]. Motivated by the importance of using BWAs
as a classical laboratory for the study of QFT phenomena, in
this paper we theoretically investigate optical propagation in
amplifying plasmonic arrays with alternate couplings, which
in the continuous limit are governed by a nonlinear Dirac-like
equation with imaginary mass. We find that the vacuum state is
unstable and acquires an expectation value with broken chiral
symmetry corresponding to the dissipative nonlinear stationary
mode. We also study modulational instability, finding the
conditions where the new vacuum is stable and unstable
due to the presence of topological defects, i.e., dissipative
solitons. This paves the way for using BWAs to simulate
tachyon condensation and spontaneous symmetry breaking
mechanisms arising in QFT.

II. MODEL

In the following we consider an amplifying plasmonic
array—a layered metal-dielectric stack—sketched in Fig. 1.
Surface plasmon polaritons (SPPs) propagating at every y-z
metal-dielectric interface are weakly coupled to nearest neigh-
bors through alternating positive and negative couplings [23].
This condition can also be achieved in BWAs either through
a Bragg structure with a low-index defect [24] or through
waveguides with propagation constants that vary periodically
along the propagation direction [9,25]. Amplification schemes
with SPPs have been intensively studied and also demonstrated
experimentally [26,27]. Gain is provided by externally pumped
active inclusions embedded in the dielectric layers that can be
modeled as two-level atoms.
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FIG. 1. (Color online) Illustrative sketch of the structure ana-
lyzed in this work: a layered metal-dielectric stack supporting SPPs
at every z-y interface. The dielectric media (blue slabs) embed
externally pumped active inclusions, which amplify SPPs propagating
along the z direction. Every nth dielectric slab of width wd , adjacent to
a metallic stripe of thickness wm, supports SPPs at the left and right
interfaces with optical amplitudes Ln,Rn. The system is assumed
homogeneous in the y,z directions and infinitely extended in the
x,y,z directions.

For continuous monochromatic waves oscillating with
angular frequency ω, the complex susceptibility εd of the
pumped dielectric media is inherently nonlinear [28]: εd =
εb + α(δ − i)/(1 + δ2 + |E/ES |2), where εb is the linear
susceptibility of the hosting medium, α is the dimensionless
gain rescaled to ω/c, c is the speed of light in vacuum, δ

is the dimensionless detuning from resonance rescaled to the
dephasing rate, ES is the saturation field, and E is the electric
field of the optical wave. For weak optical fields much smaller
than the saturation field, the full-saturated susceptibility can
be approximated by its first-order Taylor expansion in terms
of |E/ES |2: εd � εd0 + χ3|E|2, where the zeroth-order term
εd0 = εb + α(δ − i)/(1 + δ2) accounts for linear susceptibility
and gain, while the coefficient χ3 = α(i − δ)/(ES + δ2ES)2

accounts for focusing or defocusing nonlinearity (depending
on the sign of the detuning δ) and nonlinear saturation of the
gain.

In the limit of weak nonlinearity and overlap between
adjacent SPPs (see Appendix), optical propagation in the
amplifying plasmonic array sketched in Fig. 1 can be modeled
by the following pair of CMEs [23]:

i
dLn

dz
− iηLn + κ(Rn − Rn−1) + γ |Ln|2Ln = 0, (1)

i
dRn

dz
− iηRn + κ(Ln − Ln+1) + γ |Rn|2Rn = 0, (2)

where η = η′ + iη′′, η′ > 0 is the effective gain parameter, η′′
is the linear phase shift induced by two-level atoms (η′′ = 0
at resonance), κ,γ are the coupling and nonlinear coefficients,
and Ln,Rn are the left and right dimensionless field amplitudes
at every nth dielectric slot (see Fig. 1). The longitudinal
coordinate z is normalized to the scaling length z0, which
is arbitrary and can be chosen conveniently. In what follows,

we will set z0 to be the coupling length, so that κ = 1 and η,γ

are complex dimensionless constants. At λ = 594 nm, using
a silver stripe of width wm = 45 nm (εm = −12.33 + 0.97i)
and a gaining medium of width wd = 260 nm and εd = 2.13 −
0.05i, one gets a coupling length of z0 � 1 μm, and realistic
values for the gain parameter are of the order |η| � 10−2. The
full field E is given by the linear superposition E(x,z,t) =
ES

∑+∞
n=−∞{Ln(z)eL,n(x) + Rn(z)eR,n(x)}eiβz−iωt , where the

(dimensionless) vectors eL,n(x) and eR,n(x) are the unper-
turbed linear mode profiles and β is the propagation constant
of SPPs at every metal-dielectric interface. Owing to the
assumption of small overlap between adjacent SPPs, the linear
unperturbed dispersion β(ω) coincides with the well-known
single-interface dispersion (see Appendix). A full detailed
derivation of Eqs. (1) and (2) and analytical expressions for
the coefficients η,κ,γ are given in Refs. [23,28–30]. In the
Appendix we report the rigorous derivation of Eqs. (1) and
(2) starting from the full vectorial Maxwell equations and
using a multiscale expansion. We emphasize that predictions
of CMEs in the limit of small overlap between adjacent SPPs
[23] find agreement with full vectorial calculations [31,32] and
our model is fully justified.

Note that the following calculations are not dependent on
the particular value of the saturation field ES , which scales the
optical field. Owing to the dual chirality of alternating metal-
dielectric interfaces (metal-dielectric and dielectric-metal), the
system is inherently binary and every SPP is coupled with left
and right adjacent SPPs by means of two different coupling
coefficients κL,κR . However, it is possible to adjust the width
of the dielectric slabs (wd ) and metallic stripes (wm) in order
to achieve the condition κL = −κR = κ [23]. The nonlinear
coefficient is complex γ = γ ′ + iγ ′′, the real part can be either
positive or negative depending on the sign of the detuning
γ ′ ∝ δ/(1 + δ2)2, while the imaginary part is always positive
γ ′′ > 0 and accounts for the nonlinear saturation of gain.
Note that Eqs. (1) and (2) are invariant under reflection in
the x direction (n → −n, Ln → R−n, Rn → L−n), due to the
inherent chiral symmetry of the total system. Note that, since
our model assumes an infinitely extended metal-dielectric
stack, we neglect boundary effects due to finite size, which are
expected to be negligible in practical samples if the number
of layers is large and transversal dimensions are much greater
than the optical wavelength.

A. Vacuum expectation value

Owing to the externally pumped active inclusions, small
perturbations of the vacuum state Ln = Rn = 0 are exponen-
tially amplified at a rate η′. Instability develops until nonlin-
ear effects become important and nonlinear gain saturation
comes into play counterbalancing the linear amplification.
Homogeneous nonlinear stationary modes of Eqs. (1) and
(2) can be found by taking the AnsätzeLn = L0e

iqn+iμz,
Rn = R0e

iqn+iμz, where q is the transverse momentum and
μ is the nonlinear correction to the unperturbed propagation
constant β. As a consequence of the dissipative nature of
the system, the amplitudes L0,R0 do not remain arbitrary
and their moduli are fixed to be A = √

η′/γ ′′. The nonlinear
correction to the propagation constant is given by μ± =
η′′ ± 2k sin(q/2) + γ ′η′/γ ′′. The amplitude of the dissipative
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FIG. 2. (Color online) (a) Amplitude of the dissipative nonlinear
mode A as a function of the effective gain η′ for γ ′′ = 0.01i. (b)
Nonlinear dispersion μ±(q) as a function of q/π for η = 0.01 − 0.5i,
k = 1, and γ = −0.01 + 0.01i. Blue and red curves represent the two
dispersion branches μ+,μ−. The black dashed line denotes μ = 0.

nonlinear mode A is plotted as a function of the effective
gain parameter η′ in Fig. 2(a), while the nonlinear dispersion
μ±(q) is depicted in Fig. 2(b). Note that, due to the inherent
alternate coupling of the system, the nonlinear dispersion
is characterized by a Dirac diabolical point at q = 0 [33].
At this special point, the phases of both amplitudes L0,R0

remain arbitrary. Conversely, for q �= 0 the mode amplitudes
are fixed to R0 = ∓ieiq/2L0 and only a global phase is left
arbitrary.

B. Nonlinear Dirac-like equation

As mentioned in the Introduction, BWAs have been used
to mimic phenomena in both nonrelativistic and relativistic
quantum mechanics [2,11], since CMEs can be converted
into the one-dimensional relativistic Dirac equation [34].
Defining the two-component spinor ψ = [Ln(z),Rn(z)]T ,
if the transversal patterns of the amplitudes Ln,Rn are
smooth, one can take the continuous limit by introducing
the continuous spatial coordinate n → x. In this limit, the
spinor satisfies the (1+1)-dimensional nonlinear Dirac-like
equation

i∂zψ − iηψ + iκσ̂y∂xψ + γG(ψ) = 0, (3)

where G(ψ) = (|L|2L,|R|2R)T is the nonlinear spinorial term
and σ̂y is the y-Pauli matrix. In what follows, we will focus on
the case where the angular frequency of SPP ω coincides with
the two-level atom resonant frequency and thus the detuning
δ vanishes: δ = 0, so that η = η′ and γ = iγ ′′. In this case
Eq. (3) is analogous to the (1+1)-dimensional Thirring model
[35] with imaginary mass and nonlinear terms, describing the
dynamics of fermionic tachyons. Optical analogs of fermionic

FIG. 3. (Color online) Optical analog of the sombrero potential
describing spontaneous symmetry breaking in quantum field theory:
−μ2 is plotted against |ψ0|cos φ, |ψ0|sin φ, where |ψ0| is the field
amplitude and φ is the relative phase between the spinor components.
The plot is made by taking the parameters η′ = 0.02, κ = 1, γ ′′ =
0.01i.

tachyons have been recently investigated in optical graphene
and in topological insulators [36,37]. Note that Eq. (3) is a
Dirac-like equation, since the “mass term” (−iηψ) is different
from previously studied standard formulations [11,36], and is
responsible for the existence of unstable tachyonlike particles.
Owing to amplification, vacuum dynamically acquires a stable
expectation value and the ensuing final state is the optical
analog of a condensate of stable fermionic particles with
non-negative squared mass. In turn, this process is commonly
named tachyon condensation, e.g., in the context of open string
field theories [38].

III. SPONTANEOUS SYMMETRY BREAKING

Note that, analogously to the Thirring [35], sine-Gordon
[39], and Nambu-Jona-Lasinio [20] models, Eq. (3) is chirally
symmetric since it is left invariant under reflection x → −x if
the spinor components are transformed as L(x) → R(−x),
R(x) → L(−x). In turn, while the unstable vacuum state
ψ = 0 is chirally symmetric, the nonlinear homogeneous
mode ψ = ψ0e

iμz with finite amplitude ψ0 and propagation
constant μ [where μ2 = −(η′ − γ ′′|ψ0|2)2] breaks the chiral
symmetry. The optical analog of energy is represented by
the propagation constant μ and the system spontaneously
evolves to states where −μ2 is minimum. In Fig. 3, we plot
−μ2 = (η′ − γ ′′|ψ0|2)2 as a function of the mode amplitude
|ψ0| and the relative phase between the spinor components φ.
We find the characteristic sombrero profile, which constitutes
the archetypical potential describing spontaneous symmetry
breaking in QFT. Our optical analog of tachyon condensation
thus drives the physical system to a stable state with broken
chiral symmetry where −μ2 is minimum and particles (i.e.,
optical states) with non-negative squared mass are generated.

IV. MODULATIONAL INSTABILITY

In order to study the stability of the nonlinear homoge-
neous stationary mode with broken chiral symmetry under
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FIG. 4. (Color online) Maximum instability eigenvalue ρ ′
max as

a function of the transverse momentum p of perturbating waves.
(a) ρ ′

max vs p for q = π , κ = 1, η′ = 0.01, γ ′′ = 0.02i, and several
values of γ ′. Blue, green, and red curves correspond to γ ′ =
−0.01,0.01,0.05. The black dashed line denotes the instability thresh-
old ρ ′

max = 0. (b) ρ ′
max vs p for κ = 1, η′ = 0.01, γ = 0.05 + 0.02i,

and several values of q. Black, blue, green, and red curves correspond
to q = 0,0.006,0.02,π .

transversal modulation, we perturb it with small amplitude
waves carrying transverse momentum p:

Ln = [L0 + l+eipn+ρz + l∗−e−ipn+ρ∗z]eiqn+iμz, (4)

Rn = [R0 + r+eipn+ρz + r∗
−e−ipn+ρ∗z]eiqn+iμz. (5)

Inserting Eqs. (4) and (5) into Eqs. (1) and (2) and linearizing
for small |l±|,|r±| one finds a fourth-order homogeneous
system of algebraic equations [M̂ − ρ1̂]v = 0, where v =
(l+,l−,r+,r−)T , 1̂ is the identity matrix, M̂ is the linearized
system matrix, and ρ1, ρ2, ρ3, and ρ4 are the instability eigen-
values of M̂ that we have calculated numerically. Instability
occurs if one of the complex eigenvalues ρ has a positive
real part. In Figs. 4(a) and 4(b) we plot the real part ρ ′

max of
the most unstable eigenvalue as a function of the transverse
momentum p of perturbating waves for κ = 1, η′ = 0.01,
and γ ′′ = 0.02i. In Fig. 4(a), ρ ′

max is plotted for q = π and
γ ′ = −0.01,0.01,0.05 (blue, green, and red curves), while in
Fig. 4(b) the real part of the nonlinear coefficient is fixed
to γ ′ = 0.05 and q = 0,0.006,0.02,π (black, blue, green,
and red curves). In both figures, the instability eigenvalues
were calculated for the modes of the upper branch (μ+; see
Fig. 2). Note that, for q �= 0, stability depends on the sign of
γ ′ (instability for γ ′ > 0 and stability for γ ′ < 0) and thus
on the sign of the detuning δ. Conversely, at the Dirac point
q = 0, homogeneous nonlinear waves are always marginally
stable (ρ ′

max = 0).

FIG. 5. (Color online) Propagation contour plots of the left field
amplitude |Ln| for several input conditions Ln(0),Rn(0) weakly
perturbed with random noise: (a) vacuum state Ln(0) = Rn(0) = 0,
(b) nonlinear homogeneous mode at the band edge Ln(0) = Rn(0) =√

η′/γ ′′eiπn, (c) bright soliton with q = π , and (d) kink soliton with
q = 0. Numerical integration is taken with the parameters η = 0.01,
κ = 1 and (a) γ = 0.01i and [(b)–(d)] γ = 0.01 + 0.01i.

These predictions have also been confirmed by the direct
numerical integration of Eqs. (1) and (2) using a fourth-order
Runge-Kutta algorithm. In the panels of Fig. 5, we contour
plot the modulus of the left optical field |Ln| as a function of
the SPP index n and of the propagation direction z for different
input conditions. In Fig. 5(a), we set as initial condition a small
random perturbation of the vacuum state, which is unstable and
dynamically converges to the stable nonlinear homogeneous
mode at the Dirac point q = 0, which represents the vacuum
expectation value. In Fig. 5(b), we perturb the homogeneous
nonlinear mode of the upper branch at the band edge q = π

with small random perturbations, finding a modulationally
unstable chaotic dynamics. Indeed, modulational instability
is strongly related to the presence of topological defects,
which we have found in the present system as kink, bright,
and dark dissipative solitons. Due to the instability of the
vacuum background, topological defects are also unstable and
behave as strange attractors for the dynamical system. We have
numerically calculated the bright and kink soliton profiles by
using the shooting method. In Figs. 5(c) and 5(d), we perturb
bright and kink solitons with small random waves finding that
the background noise is amplified and eventually destroys the
solitons.

V. CONCLUSIONS

In this paper we have studied an optical analog of sponta-
neous symmetry breaking induced by tachyon condensation.
We focused our attention on amplified SPPs propagating at
every interface of a metal-dielectric stack, but our results are
valid also for amplifying BWAs with alternating couplings.
Optical propagation is modeled through CMEs, which in the
continuous limit converge to a nonlinear Dirac-like equation
that conserves chirality. We find that the vacuum is unstable
and the system spontaneously evolves to a stable homogeneous
state with broken chiral symmetry. This symmetry breaking is
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accompanied by the formation of propagating optical modes,
which correspond to particles with non-negative squared mass
in the QFT-optics analogy. We studied the modulational
instability of the nonlinear modes of the system, and found that
at the Dirac point instability never occurs. This paves the way
for using amplifying plasmonic arrays as a classical laboratory
for spontaneous symmetry breaking effects in quantum field
theory. We also envisage that further investigations and
developments of QFT-optical analogies may be found in the
context of nonlinear PT -symmetric optical systems.
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APPENDIX

1. Derivation of coupled-mode equations for a layered
metal-dielectric stack

We start our derivation from the full vectorial wave equation
for the monochromatic field Ee−iωt with angular frequency ω:

∇ × ∇ × E = μ0ω
2D, (A1)

where μ0 is the vacuum magnetic permeability and the
physical electric field is given by the real part Re[Ee−iωt ].
In the limit where the optical field is much smaller than
the saturation field E � ES , the dielectric constant of the
externally pumped media is

εd � εb + δεd + χ3|E|2, (A2)

where δεd = α(δ − i)/(1 + δ2), χ3 = α(i − δ)/(ES +
δ2ES)2, and the quantities involved in these expressions have
been defined above. Thus, the electric displacement is given
by D = ε0[(ε + �ε)E + N], where

ε(x) =
+∞∑

n=−∞

{
εbθ

[
wd

2
− |x − 2nw0|

]

+ ε′
mθ

[
wm

2
− |x − (2n + 1)w0|

]}
, (A3)

�ε(x) =
+∞∑

n=−∞

{
δεdθ

[
wd

2
− |x − 2nw0|

]

+ iε′′
mθ

[
wm

2
− |x − (2n + 1)w0|

]}
, (A4)

N(x,z) =
+∞∑

n=−∞
χ3|E|2Eθ

[
wd

2
− |x − 2nw0|

]
, (A5)

where w0 = (wd + wm)/2, θ (x) is the Heaviside step function,
and the prime and double prime suffixes indicate the real and
imaginary parts. Since the structure is assumed homogeneous
and infinitely extended along the y direction, ∂y derivatives
in Eq. (A1) are null and it is possible to achieve a system
of differential equations for the Ex,Ez field components of

plasmonic TM waves (Ey = 0)

∂2
xzEz − ∂2

zzEx = μ0ω
2Dx, (A6)

∂2
xzEx − ∂2

xxEz = μ0ω
2Dz. (A7)

The magnetic field H = Hyŷ is determined by H = ∇ ×
E/(iμ0c). In what follows we are assuming that the effects
of metal losses and of the active inclusions embedded in the
dielectric media are small: |�εE|,|N| � |εE|. Introducing the
small dummy variable s, we make the following Ansätze:

Ex(x,z) = ES

+∞∑
n=−∞

[Ln(z)eL,x(x − xL,n)

+Rn(z)eR,x(x − xR,n)]eiβz + δExe
iβz + o(s5/2),

(A8)

Ez(x,z) = ES

+∞∑
n=−∞

[Ln(z)eL,z(x − xL,n)

+Rn(z)eR,z(x − xR,n)]eiβz + δEze
iβz + o(s5/2),

(A9)

where xL,n = −wd/2 + 2nw0, xR,n = wd/2 + 2nw0 are the
positions of left and right interfaces, eL,R are the unperturbed
mode profiles of left and right interfaces, Ln,Rn are the left
and right mode amplitudes, β is the unperturbed propagation
constant, and δE is the residual field correction. For the
development of the multiscale expansion we assume that

|Ln| , |Rn| ∼ o(s1/2), (A10)

|�ε| ,e−qdwd ,e−qmwm ∼ o(s), (A11)

|∂zLn| , |∂zRn| , |δE| ∼ o(s3/2), (A12)

where q2
d = β2 − εbω

2/c2, q2
m = β2 − ε′

mω2/c2. The left and
right SPP amplitudes Ln(z),Rn(z) and mode profiles eL,R are
dimensionless, while the physical dimensions are carried by
the saturation field ES . The assumption that e−qdwd ,e−qmwm are
small and of the same order of |�ε| states quantitatively the
approximation of weak overlap between adjacent SPPs.

2. Linear modes and dispersion: o(s1/2) order

At the o(s1/2) order, left (Ln) and right (Rn) SPPs are
uncoupled and Maxwell equations can be reduced to the linear
system of differential equations

L̂kek = 0, (A13)

where the labels k = L,R correspond to left and right SPPs,
ek are the uncoupled linear mode profiles ek = (ek,xek,z)T , and

L̂k =
(

β2 − εkω
2/c2 iβ∂x

iβ∂x −εkω
2/c2 − ∂2

xx

)
. (A14)

The unperturbed dielectric susceptibility profiles εk = εL,R

represent single isolated left and right interfaces and are
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explicitly given by

εL = ε′
mθ (−x + xL,n) + εbθ (x − xL,n), (A15)

εR = ε′
mθ (x − xR,n) + εbθ (−x + xR,n). (A16)

Boundary conditions (BCs) at o(s1/2) order require the
continuity of ek,z and εkek,x at the interfaces x = xL,n,xR,n

(xL,n for k = L and xR,n for k = R):

εbeL,x(x+
L,n) = ε′

meL,x(x−
L,n), (A17)

eL,z(x
+
L,n) = eL,z(x

−
L,n), (A18)

ε′
meR,x(x+

R,n) = εbeR,x(x+
R,n), (A19)

eR,z(x
+
R,n) = eR,z(x

−
R,n). (A20)

Equation (A13) can be solved straightforwardly, yielding the
mode profiles eL,R:

eL(x − xL,n) =
(

iβ

qd

1

)
e−qd (x−xL,n)θ (x − xL,n)

+
(− iβ

qm

1

)
eqm(x−xL,n)θ (−x + xL,n), (A21)

eR(x − xR,n) =
(

iβ

qm

1

)
e−qm(x−xR,n)θ (x − xR,n)

+
(− iβ

qd

1

)
eqd (x−xR,n)θ (−x + xR,n). (A22)

Inserting Eqs. (A21) and (A22) into Eqs. (A17)–(A20), one
achieves the linear dispersion law for SPPs at a single isolated
interface

β = ω

c

√
εbε′

m

εb + ε′
m

. (A23)

Note that the unperturbed dispersion does not depend on the
chirality of the system, i.e., it is the same for both left and right
single isolated interfaces.

3. Solvability condition and coupled-mode
equations: o(s3/2) order

At the o(s3/2) order, the linearized Maxwell equations for
the residual field δE = (δExδEz)T yield

L̂δE + ESL̂[Rn−1eR,n−1 + LneL,n + RneR,n

+Ln+1eL,n+1] + ESF̂[LneL,n + RneR,n]

−ω2

c2
χ3E

3
S[|Ln|2Ln|eL,n|2eL,n

+ |Rn|2Rn|eR,n|2eR,n] = 0, (A24)

where

F̂ =
(−�εω2/c2 − 2iβ∂z ∂2

xz

∂2
xz −�εω2/c2

)
. (A25)

At the o(s3/2) order, only contributions from nearest SPP
neighbors enter the equation for the residual field δE. Note
that the linear operator

L̂ =
(

β2 − εω2/c2 iβ∂x

iβ∂x −εω2/c2 − ∂2
xx

)
(A26)

does not coincide with L̂L,R . Indeed, L̂ depends on the
complete dielectric susceptibility profile ε, while L̂L,R depend
on the single interface profiles εL,R . As a result, the linear
o(s1/2) order modes eL,eR are not eigenvectors of the operator
L̂, which accounts for the coupling terms between adjacent
SPPs. The nonlinear BCs at o(s3/2) order are achieved from
the full BCs

Ez(x
+
L,n) = Ez(x

−
L,n), (A27)

Ez(x
+
R,n) = Ez(x

−
R,n), (A28)

εmEx(x−
L,n) = [εb + δεd ] Ex(x+

L,n) + Nx(x+
L,n), (A29)

εmEx(x+
R,n) = [εb + δεd ] Ex(x−

R,n) + Nx(x−
R,n), (A30)

by retaining only o(s3/2) terms. Following the same procedure
described in Refs. [28–30], we take the scalar product of
Eq. (A24) with the single interface linear modes eL,eR .
Equations (A27)–(A30) enter the off-integral terms arising
from integration by parts, which is applied to calculate the
scalar products. The coupling coefficients through dielectric
κd and metallic κm media ensue from the overlap integrals

Od =
∫ +∞

−∞
dx e∗

L(x − xL,n) · L̂eR(x − xR,n), (A31)

Om =
∫ +∞

−∞
dx e∗

R(x − xR,n−1) · L̂eL(x − xL,n). (A32)

The integral expression for the coupling coefficients κd,κm is
given by

κd = βOd

{
2
∫ +∞

−∞
dx ε(x)|eR,x |2

}−1

, (A33)

− κm = βOm

{
2
∫ +∞

−∞
dx ε(x)|eL,x |2

}−1

. (A34)

After taking the scalar products one achieves the propagation
equations for left (Ln) and right (Rn) SPP amplitudes as the
solvability condition of the multiple scale expansion

i
dLn

dz
= iηLn − κdRn + κmRn−1 − γ |Ln|2Ln, (A35)

i
dRn

dz
= iηRn − κdLn + κmLn+1 − γ |Rn|2Rn, (A36)
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where

η = β

2(εb + ε′
m)

[
i
ε′
m

εb

δεd − εb

ε′
m

ε′′
m

]
, (A37)

κd = 2εbε
′
mβ

(εb)2 − (ε′
m)2

e−qdwd , (A38)

κm = 2εbε
′
mβ

(εb)2 − (ε′
m)2

e−qmwm, (A39)

γ = χ3E
2
S

ε′
mβ

(
q2

d + β2
)

4q2
d εb(εb + ε′

m)
. (A40)

The continuity of the transverse displacement Dx at every
metal-dielectric interface implies a π phase jump of the
transverse electric field ex , which is discontinuous, and in
turn the couplings through metallic and dielectric media have
opposite signs.
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C. E. Rüter, and D. Kip, Phys. Rev. A 81, 053817 (2010).
[25] A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch,
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