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We study the spatiotemporal effects in waveguide arrays with Kerr and Raman nonlinearities when a short
pulse is launched into the system where both dispersive and diffractive resonant radiations can be simultaneously
emitted by solitons. We show that it is possible to generate and control the supercontinuum not only in the
frequency domain, but also in the wavenumber domain. This work could potentially pave the way for designing
unique optical devices that generate spectrally broad supercontinua with a controllable directionality by taking
advantage of the combined physics of optical fibers and waveguide arrays.
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I. INTRODUCTION

Waveguide arrays (WAs) present a unique discrete periodic
photonic system to investigate many interesting fundamen-
tal phenomena such as discrete diffraction [1,2], discrete
solitons [1,3,4], and photonic Bloch oscillations [1,5–8]. In
applications, two-dimensional (2D) networks of nonlinear
waveguides with discrete solitons may be useful for designing
signal-processing circuits [9]. Binary WAs have also been
intensively used to mimic relativistic phenomena typical of
quantum field theory, such as Zitterbewegung [10], Klein para-
dox [11], fermion pair production [12], and the Dirac equation
in the linear regime [13]. Quite recently, the optical analog
of relativistic Dirac solitons with exact analytical solutions in
binary WAs was found [14], which could potentially pave the
way to using binary WAs as a classical simulator of quantum
nonlinear effects arising from the Dirac equation, something
that is thought to be impossible to achieve in conventional (i.e.,
linear) quantum field theory.

Dispersive resonant radiation (DisRR), which emerges
due to high-order dispersion terms, has been well explored
in the last decade in the temporal case for optical fibers
[15–19]. When an ultrashort pulse is launched into optical
fibers, a DisRR due to phase matching between the fiber
and the soliton group velocity dispersion generates one or
more new frequencies [18,19]. This DisRR, together with
other well-known nonlinear effects such as self- and cross-
phase modulation, soliton fission [20], and stimulated Raman
scattering [21], are the main ingredients of supercontinuum
generation [22,23], especially in highly nonlinear photonic
crystal fibers [24]. Supercontinuum generation has quickly
been established as one of the most important phenomena
in nonlinear fiber optics and has led to a number of im-
portant technological advances in various fields, such as
spectroscopy and medical imaging [25], metrology [26],
and the realization of broadband sources [27], to name just
a few.

In a recent study diffractive resonant radiation (DifRR)—an
analog of DisRR—has been found when a spatial soliton in
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the continuous-wave (CW) regime is launched into WAs [28].
We have shown in Ref. [28] that when the phase-matching
condition is satisfied, a spatial soliton emits DifRR with
a new, well-defined direction, i.e., transverse wavenumber.
It turns out that DifRR is a universal effect which can
occur in WAs not only in the CW regime, but also in
the spatiotemporal case, as we have shown in Ref. [29],
where a long-pulse was used. In Ref. [29] wavenumber-
supercontinuum generation and compensation of the soliton
self-wavenumber shift by the emitted DifRR have also been
revealed.

The wavelength dependence of the coupling coefficient
is large because it arises from the evanescent field overlap
between adjacent waveguides. This in turn makes discrete
diffraction, i.e., beam spreading, wavelength dependent. This
was demonstrated dramatically when a continuum generated
via a microstructure fiber was injected into a single waveguide
and the spectrum of the colors in the light beam was spatially
dispersed at the output of the WA made of a LiNbO3 crystal
with defocusing nonlinearity [30,31]. Note that in Refs. [30,31]
the features of polychromatic light propagation (such as
spatiospectral control, diffraction management, broadband
switching, and self-trapping of polychromatic light) are in-
vestigated when the input light launched into WAs is already
a spectral supercontinuum source.

Motivated by the latest achievements in DifRR studies
and features of polychromatic light propagation in WAs, in
this paper we first present the generalized coupled-mode
equations governing the spatiotemporal effects in WAs made of
silica which take into account the wavelength dependence of
the coupling coefficient. Then we investigate the generation
of a supercontinuum in WAs both in frequency and in
wavenumber, its dynamics, and also ways to control it when
short input pulses are launched into the system under various
conditions.

II. GENERALIZED COUPLED-MODE EQUATIONS

Our starting point is the generalized coupled-mode equa-
tions (GCMEs) of a WA consisting of identical waveguides
made of silica in the frequency domain [see Eqs. (2.1.4)–
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(2.1.5) in Ref. [23]),

dÃn

dz
= i

[
β(ω) + �βNL

n − β(ω0)
]
Ãn

+ iκ(ω)[Ãn+1 + Ãn−1], (1)

where Ãn is the electric field envelope in the nth waveguide in
the frequency domain, z is the longitudinal coordinate, β(ω)
is the mode-propagation constant of identical waveguides at
frequency ω, �βNL

n is the nonlinear contribution to the mode-
propagation constant in the nth waveguide, β(ω0) is the mode-
propagation constant at carrier frequency ω0, and κ(ω) is the
frequency-dependent coupling coefficient between identical
adjacent waveguides (see Refs. [23,27] for more details). Note
that in most cases the coupling coefficient κ is often treated as a
constant, but in this specific work, where the supercontinuum is
under consideration, we would like to relax this approximation.

The above frequency-domain GCMEs can be converted to
the time domain by expanding both β(ω) and κ(ω) in Taylor
series around the carrier frequency ω0, replacing (ω − ω0) with
a time derivative while taking the inverse Fourier transform,
and using the comoving frame T = t − z/vg , where vg is the
group velocity at ω0. In doing so we obtain the following
GCMEs in the time domain:

i∂zAn + D(i∂T )An + κ(i∂T )[An+1 + An−1]

+ γ

(
1 + i

ω0
∂T

)
An(z,T )

∫ ∞

−∞
R(t ′)|An(z,T − t ′)|2dt ′

= 0, (2)

where the linear dispersion operator is given by D(i∂T ) ≡
s|β2|

2 ∂2
T + ∑

m�3
βm

m! [i∂T ]m, with s = +1 (s = −1) for the
anomalous (normal) group velocity dispersion regime, and
βm is the mth-order group velocity dispersion coefficient. Note
that the group velocity vg = 1/β1. Meanwhile, the operator for
the coupling coefficient is given by κ(i∂T ) ≡ ∑

m�0
κm

m! [i∂T ]m

and κm is the mth-order derivative of κ(ω) at carrier frequency
ω0. Here we assume that the WA consists of identical waveg-
uides, with the nonlinear parameter of each waveguide being
γ . The nonlinear response function R(t) = (1 − fR)δ(t) +
fRhR(t), where the first term represents the instantaneous
electronic contribution, with δ(t) being the Dirac δ function,
hR(t) is the Raman response function of the core, and fR

represents its fractional contribution. For silica fR � 0.18 and
the Raman effect is included through a simple model in which

hR(t) has the form hR(t) = τ 2
1 +τ 2

2

τ1τ
2
2

exp(−t/τ2)sin(t/τ1)
(t),
where τ1 = 12.2 fs and τ2 = 32 fs [27], and 
(t) is the Heav-
iside step function that ensures causality. The self-steepening
effect is included through the derivative ∂T in the nonlinear
terms. Now we introduce dimensionless variables ξ = z/LD ,
τ = T/T0, and an = An/

√
P0, where the dispersion length

LD = T 2
0 /|β2|, and T0 is related to the full width at half-

maximum (FWHM) pulse duration in the case of a sech-shaped
pulse as follows: TFWHM � 1.763T0 [27]. The power scale
is P0 = 1/(γLD). With these new variables, Eqs. (2) are

equivalent to the following dimensionless GCMEs:

i∂ξ an + D(i∂τ )an + LDκ(i∂τ )[an+1 + an−1]

+
(

1 + i

ω0T0
∂τ

)
an

∫ ∞

−∞
r(τ ′)|an(ξ,τ − τ ′)|2dτ ′ = 0,

(3)

where the dispersion operator now assumes the form D(i∂τ ) ≡
1
2 s∂2

τ + ∑
m�3 αm[i∂τ ]m, with αm ≡ βm/[m!|β2|T m−2

0 ],
whereas the operator for the coupling coefficient now has
the form κ(i∂τ ) ≡ ∑

m�0
κm

m!T m
0

[i∂τ ]m, and the dimensionless
function r(τ ) is obtained by rescaling time t with T0 in the
response function R(t).

Equation (3) is used later to investigate supercontinuum
generation in a WA. In order to simulate Eq. (3) one needs
to calculate the dispersion D and the coupling coefficient κ

as functions of the wavelength. In the rest of this paper, as
a practical example we specify the parameters for the WA as
follows: the WA is formed by identical conventional step-index
fibers with the cladding made of fused silica and the core
made of silica with 1.8% dopant GeO2. The dopant at the low
concentration used here is just to ensure that the refractive
index of the core (which has been well approximated with the
Sellmeier equation) is slightly larger than that of the cladding.
The core radius is 5 μm and the center-to-center spacing
between two adjacent cores is 20 μm. Recent advances in
femtosecond-laser writing technologies for WAs of fused silica
(see Ref. [32]) make the above-proposed WA feasible.

With this specific WA one can calculate the coupling
coefficient between adjacent waveguides as a function of the
wavelength using formulas in Ref. [33]. The obtained result is
shown in Fig. 1(a). One can see that the longer the wavelength,
the larger the coupling coefficient κ . This is understandable
because for longer wavelengths the evanescent field spreads
out more into the cladding, thus leading to an increase
in the coupling coefficient. This feature of the coupling
coefficient is essential in the dynamics of the supercontiuum
generation in the WA as shown later. The solid (blue) curve
in Fig. 1(b) presents the dispersion parameter D of each
individual waveguide as a function of the wavelength. The
dispersion is anomalous (D > 0) when λ > 1.307 μm and
normal (D < 0) for shorter wavelengths. The dotted (red)
vertical line in Fig. 1(b) indicates the position of the cutoff
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FIG. 1. (Color online) (a) Coupling coefficient κ as a function
of wavelength. (b) The solid (blue) curve represents the dispersion
parameter D of each individual waveguide a a function of the
wavelength, whereas the dotted (red) vertical line indicates the
position of the cutoff wavelength at around 1.11 μm. The parameters
are given in the text.
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wavelength λco � 1.11 μm; thus for λ > λco waveguides
are single mode, whereas for shorter wavelengths they are
multimode.

III. SUPERCONTINUUM GENERATION IN WAVEGUIDE
ARRAYS IN BOTH FREQUENCY AND

WAVENUMBER DOMAINS

In this section we systematically investigate the generation
of a supercontinuum and its dynamics inside the WA when
short pulses are launched into the system. The initial condition
at the WA input for simulating Eqs. (3) is a(n,τ,0) =
3sech(n/4)exp(ik0n)sech[(τ + 100)/2], where the parameter
k0 is the initial transverse wavenumber, which represents the
phase difference between adjacent waveguides at the input
and, thus, the initial direction of the input pulse. The input
parameters are the central wavelength λ0 = 1.55 μm and
the time scale T0 = 50 fs. With these input parameters, the
dispersion length (also the length scale here) is calculated to
be LD = 11 cm and the power scale P0 = 9.54 kW. The input
pulse will cover seven waveguides at the FWHM level. The
evolution of the pulse is illustrated in Figs. 2(a) and 2(b) in the
(n,τ,ξ ) space for the initial transverse wavenumber k0 = 1 and
0, respectively. The top slide in Figs. 2(a) and 2(b) is shown
in Figs. 2(c) and 2(d), respectively, in the (n,τ ) plane on a
logarithmic scale in order to enhance the visibility of weak
features.

As shown in Figs. 2(a) and 2(b), after being launched into
the WA, the short pulse will undergo compression both in
space (n direction) and in time (τ direction). After reaching
the maximum compression at the propagation distance ξ �
0.5 the pulse will spread out quickly in both time and
space. Because the input pulse with the central wavelength
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FIG. 2. (Color online) (a, b) Evolution of a pulse in the (n,τ,ξ )
space when k0 = 1 and 0, respectively, at a normal scale. (c, d) The top
slide in (a) and (b), respectively, in the (n,τ ) plane on a logarithmic
scale.

λ0 = 1.55 μm is in the anomalous dispersion [see Fig. 1(b)],
it will generate DisRR at wavelengths around 0.9 μm in
the normal dispersion which is in perfect agreement with
the phase-matching-condition calculation for the DisRR in a
single fiber as shown in Ref. [18], provided that the dispersion
curve plotted in Fig. 1(b) is used for this calculation. In addition
to this DisRR, when the initial transverse wavenumber k0 = 1
(which means the input incidence is under a certain tilt angle),
as shown in Refs. [28,29], a DifRR will be generated and the
anomalous recoil effect will occur. Indeed, due to the folding
of the band structure at the edges of the first Brillouin zone,
after the generation of the DifRR, the main pulse, instead of
recoiling in the opposite direction to the DifRR, will recoil
towards the DifRR itself [see Fig. 2(a)]. Because the direction
change of the main pulse is small, the anomalous recoil effect is
not very visible in Fig. 2(a) (which is a 3D plot), but it is much
more visible in the case of the CW regime, for which 2D figures
are illustrated in Ref. [28]. Moreover, we can confirm that the
radiation generated by diffraction shown in Figs. 2(a) and 2(c),
labeled ” DifRR,” is indeed the DifRR discovered in Ref. [28].
This can be done by going into the transverse wavenumber
domain k instead of the real-space domain n as shown in
Fig. 5, where the wavenumber of the obtained DifRR is in
perfect agreement with the prediction by the phase-matching
condition for DifRR in Ref. [28]. Now if k0 = 0 (which means
the incidence is normal), as shown in Ref. [28], DifRR will
not occur [see Figs. 2(b) and 2(d)]. So, in the case of Figs. 2(a)
and 2(c), the pulse will be split into several subpulses in both
time and space (with a different direction for each subpulse
in space), whereas in the case of Figs. 2(b) and 2(d) the pulse
will be split just in time and spread out (but not be split into
subpulses) in space [see also Figs. 3(a) and 3(b)]. Therefore,
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FIG. 3. (Color online) (a, b) Evolution of a pulse in the (n,λ,ξ )
space when k0 = 1 and 0, respectively, on a normal scale. (c, d) The
top slide in (a) and (b), respectively, in the (n,λ) plane on a logarithmic
scale.
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by varying the tilt angle at the input, one can control the
directionality of pulses formed inside the WA.

Now if we take the Fourier transform a(n,τ,ξ ) → ã(n,λ,ξ )
(time domain τ is transformed into wavelength domain λ), then
we obtain Fig. 3 from Fig. 2. The evolution of the pulse is illus-
trated in Figs. 3(a) and 3(b) in the (n,λ,ξ ) space for the initial
transverse wavenumber k0 = 1 and 0, respectively, on a normal
scale. The top slide in Figs. 3(a) and 3(b) is shown in Figs. 3(c)
and 3(d), respectively, in the (n,λ) plane on a logarithmic
scale. One can see from Figs. 3(a) and 3(b) that at the distance
ξ � 0.5 the spectra will reach the maximum width, which
corresponds to the maximum temporal compression of the
pulse in Figs. 2(a) and 2(b), and at this point DisRR and
the overall spectral supercontinuum will be generated in the
wavelength range 0.8–2.2 μm. After reaching that distance
the pulse will spread out in space. Due to the dispersion of the
coupling coefficient κ shown in Fig. 1(a), the short-wavelength
components have smaller coupling coefficients κ and, thus,
will be dispersed less in space. On the contrary, the long-
wavelength components, with larger coupling coefficients, will
be dispersed strongly in space. This will lead to the formation
of the Y-filled pattern in the (n,λ) plane in Figs. 3(c) and
3(d), where the bottom (top) of the letter Y corresponds to
short-wavelength (long-wavelength) components. So, the
short-wavelength components will be localized around the
central waveguide, n = 0, or slightly shifted to nearby
waveguides with positive (or negative) indexes (n > 0 or
n < 0) depending on the initial transverse wavenumber k0 [see
Figs. 3(d) and 3(c), respectively], whereas the long-wavelength
components can be strongly dispersed in space. The formation
of a Y-filled pattern in the (n,λ) plane has been reported earlier,
in Refs. [30,31], but in these previous works, as mentioned
above, the spectral supercontinuum has been generated outside
before being launched into the WA. Note that in the case k0 = 0
[see Figs. 3(b) and 3(d)] the pulse will spread out in space but
not be split, whereas in the case k0 = 1 [see Figs. 3(a) and 3(c)]
the pulse will be split into several dominant subpulses in space
and these subpulses will spread out and travel farther along
different directions. Note also that the DifRR will contain only
long-wavelength components. This is expected because after
generation the DifRR is strongly bent in space compared to the
initial direction of the input pulse, and only long-wavelength
components with a large coupling coefficient, as discussed
earlier, can be easily bent in WAs.

Now if we take the Fourier transform a(n,τ,ξ ) → ã(k,λ,ξ )
(time domain τ and space domain n are transformed into
wavelength domain λ and transverse wavenumber domain k,
respectively), then we will obtain Fig. 4 from Fig. 2. The
evolution of the pulse is illustrated in Figs. 4(a) and 4(b)
in the (k,λ,ξ ) space for the initial transverse wavenumber
k0 = 1 and K = 0, respectively. The top slide in Figs. 4(a)
and 4(b) is shown in Figs. 4(c) and 4(d), respectively, in the
(k,λ) plane. Figure 4 is plotted on a logarithmic scale. One
can see from Figs. 4(a) and 4(b) that at the distance ξ � 0.5
a supercontinuum, both in frequency and in wavenumber, will
be generated, and instead of being localized in a small region
at the input (k,λ) plane, the field will spread out and fill in
a large region in the (k,λ) plane for ξ > 0.5. Note that in
the case k0 = 0 [see Figs. 4(b) and 4(d)], only DisRR will be
generated, whereas in the case k0 = 1 [see Fisg. 4(a) and 4(c)]
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both DisRR and DifRR will be generated. It is worth noting
that the central wavenumber of the DifRR for k0 = 1 calculated
by the phase-matching condition obtained in Ref. [28] will
be kDifRR � −3, i.e., close to the boundary of the Brillouin
zone kB1 = −π , and thus due to the folding effect of the
Brillouin zone reported in Ref. [28] part of the DifRR will
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be folded into the other side of the Brillouin zone (kB2 = π ).
That is why Fig. 4(c) shows two regions of DifRR at the
two boundaries of the Brillouin zone. The spatial splitting of
the input pulse into other subpulses and the generation of the
DifRR is shown more clearly in Fig. 5(a), where the evolution
of the pulse is presented in the (k,τ,ξ ) space for the initial
transverse wavenumber k0 = 1, and in Fig. 5(c), where the top
slide in Fig. 5(a) is plotted separately. The same illustration
is presented in Figs. 5(b) and 5(d) for the case with initial
transverse wavenumber k0 = 0. Note that each value of the
wavenumber k represents the direction of the corresponding
pulse in space. It is clear from Figs. 5(b) and 5(d) that in the
case k0 = 0 the pulse is only split in time, whereas in space
the pulse spreads out, but it is not split. On the contrary, in
the case k0 = 1 [see Figs. 5(a) and 5(c)] the splitting happens
both in time and in space, and one can see that several separate
dominant components of the transverse wavenumbers k are
generated.

So far, we have shown that by varying the initial transverse
wavenumber k0 of the input pulse one can manipulate the

propagation of pulses in space. Another way of manipulating
the pulse propagation inside WAs is the application of an
external linear potential across the transverse coordinate n,
which changes the propagation constant in the n direction of
WAs in a linear fashion, by using, for instance, the electro-optic
[5] or thermal-optic [6] effect. This results in adding a term,
αnan, to the left-hand side of Eqs. (3), where α is the strength of
the linear potential, i.e., the variation of the effective refractive
index in WAs. Note that the linear potential in WAs can lead
to the realization of photonic Bloch oscillations [5,6] and the
compensation of the soliton self-wavenumber shift [29]. Here
we show that the linear potential can be used to manipulate
the supercontinuum generated inside WAs. The evolution of
the pulse is illustrated in Figs. 6(a) and 6(b) in the (n,λ,ξ )
space for the same initial transverse wavenumber k0 = 1, but
the linear potential parameter α = 1 and −1, respectively.
The top slide in Figs. 6(a) and 6(b) is shown in Figs. 6(c)
and 6(d), respectively, in the (n,λ) plane. It is easy to see in
Fig. 6 that one can manipulate the directions of pulses traveling
inside WAs by varying α. Changing α can also lead to a slight
variation of the spectral supercontinuum width; for instance,
Fig. 6(d), with α = −1, has spectral components which spread
slightly farther into both short and long wavelengths compared
to Fig. 6(c), with α = 1. This also happens when the initial
transverse wavenumber k0 changes [compare the spectral
widths in Figs. 3(c) and 3(d) or Figs. 4(c) and 4(d)].

IV. CONCLUSIONS

In conclusion, we have demonstrated with accurate numeri-
cal simulations that it is possible to generate a supercontinuum
in WAs in both the frequency and the wavenumber domains.
After a spectral supercontinuum is generated inside WAs,
the short-wavelength components will be localized mainly
around the input waveguides or slightly dispersed from them,
whereas the long-wavelength components will be strongly
dispersed in space. The input pulse can also be spatially
split into several dominant subpulses inside WAs, whose
directions can be controlled by varying the input angle and/or
the linear potential. This work could potentially pave the way
for designing unique optical devices that generate spectrally
broad supercontinua with a controllable directionality and
many other unexplored spatiotemporal effects in WAs.
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Christodoulides, A. Tünnermann, S. Nolte, and A. Szameit,
Phys. Rev. Lett. 109, 023602 (2012).

[14] Tr. X. Tran, S. Longhi, and F. Biancalana, Ann. Phys. 340, 179
(2014).

[15] H. H. Kuehl and C. Y. Zhang, Phys. Fluids B 2, 889 (1990).
[16] P. K. A. Wai, H. H. Chen, and Y. C. Lee, Phys. Rev. A 41, 426

(1990).
[17] V. I. Karpman, Phys. Rev. E 47, 2073 (1993).
[18] N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[19] F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70,

016615 (2004).
[20] A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901

(2001).
[21] V. N. Serkin, T. L. Belyaeva, G. H. Corro, and M. A. Granados,

Quantum Electron. 33, 325 (2003).
[22] J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135

(2006).

[23] G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed.
(Academic Press, New York, 2008).

[24] P. St. J. Russell, Science 299, 358 (2003).
[25] Edited by R. Alfano, The Supercontinuum Laser Source

(Springer-Verlag, Berlin, 2006).
[26] R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hánsch,
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