LE QUY DON
Technical University
VietnameseClear Cookie - decide language by browser settings

Initial Parameters Affecting the Multilayer Doubly Curved Concrete Shell Roof

Do, T.M.D. and Lam, T.Q.K. and Nguyen, T.T.N. and Ngo, V.T. and Vu, H.H. and Nguyen, T.C. and Doan, V.D. (2021) Initial Parameters Affecting the Multilayer Doubly Curved Concrete Shell Roof. Advances in Civil Engineering, 2021: 7999103. ISSN 16878086

Full text not available from this repository. (Upload)

Abstract

Doubly curved shell roof structures have been widely studied and applied in civil buildings, because of their compressive capacity. As a spatial structure, it should increase the space, reduce the thickness of the shell, and create the architecture for the building. In particular, reinforcement is needed to repair the shell surface, forming the multilayer curved shell roof structures. In this multilayer curved shell roof, it is necessary to investigate the influence of thickness of layers, the influence of the location of the steel fibres concrete layer, and the influence of steel fibres content contained in concrete on the state of stress and strain and build relationships, load-vertical displacement and stress in the x and y directions of the shell in the investigated cases. So, this paper presents an ANSYS numerical simulation study related to the state of stress and strain in double-layer doubly curved concrete shell roof with the initial parameters being changed such as the thickness of the layers, the location of the steel fibres concrete layer in the structure (the steel fibres concrete layer that is placed above and below the normal concrete layer), and the steel fibres content contained in concrete shell with the size of 3000 × 3000 mm, which is simulated by ANSYS after being experimentally conducted on this curved shell roof; the results of experimental and simulation study are verified by each other. Research results show that the thickness of the steel fibres concrete layer is placed below the normal concrete layer, the percentage of steel fibres contained in the concrete is 2%, and the bearing capacity of the curved shell is optimal. © 2021 Thi My Dung Do et al.

Item Type: Article
Divisions: Institutes > Institute of Techniques for Special Engineering
Identification Number: 10.1155/2021/7999103
Additional Information: Language of original document: English.
URI: http://eprints.lqdtu.edu.vn/id/eprint/8719

Actions (login required)

View Item
View Item