LE QUY DON
Technical University
VietnameseClear Cookie - decide language by browser settings

Aerodynamic characteristics of flapping wings under steady lateral inflow

Han, J.-S. and Nguyen, A.T. and Han, J.-H. (2019) Aerodynamic characteristics of flapping wings under steady lateral inflow. Journal of Fluid Mechanics, 870. pp. 735-759. ISSN 221120

Text
Aerodynamic characteristics of flapping wings under steady lateral inflow..pdf

Download (1MB) | Preview

Abstract

This experimental study investigates the effect of a uniform lateral inflow on the aerodynamic characteristics of flapping wings. Seven designated sideward ratios in the hovering condition and in the presence of a contralateral wing and a body were taken into account as variables in order to secure a better understanding of wing-wing and/or wing-body interactions under the lateral inflow. Our results from the single-wing cases clarified that an inflow running from the wingroot strengthened the leading-edge vortex, thereby augmenting the aerodynamic force/moment. The inflow running in the opposite direction drastically bent the leading-edge vortex to the trailing edge, but the cycle-averaged aerodynamic force/moment was barely changed. This led to substantial imbalances in the force/moment on the two wings. The roll moment on a centre of gravity and the static margin suggested flight instability in the lateral direction, similar to previous studies. We found that the wing-wing interaction was not completely negligible overall under a lateral inflow. A massive downwash induced by the wing on the windward side nearly neutralized the aerodynamic force/moment augmentations on the other wing with lower effective angles of attack. The wing-wing interaction also gave rise to a low-lift high-drag situation during the pitching-up wing rotation, resulting in greater side force derivatives than the theory of flapping counterforce. Further calculations of the roll moment and the static margin with the centre of gravity showed that the wing-wing interaction can improve static stability in the lateral direction. This mainly stemmed from both the attenuation of the lift augmentation and the elimination of the positive roll moment of the flapping-wing system. © 2019 Cambridge University Press.

Item Type: Article
Divisions: Faculties > Faculty of Aerospace Engineering
Identification Number: 10.1017/jfm.2019.255
Uncontrolled Keywords: Angle of attack; Lift; Vortex flow; Aerodynamic characteristics; Aerodynamic forces; Angles of attack; Centre of gravity; Flapping-wing systems; Lateral directions; Leading-edge vortices; wimming/flying; Swimming/flying; Wings; aerodynamics; experimental study; steady flow; vortex
Additional Information: Language of original document: English.
URI: http://eprints.lqdtu.edu.vn/id/eprint/9292

Actions (login required)

View Item
View Item