LE QUY DON
Technical University
VietnameseClear Cookie - decide language by browser settings

Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method

Tran, T.T. and Pham, Q.-H. and Nguyen-Thoi, T. (2021) Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method. Defence Technology, 17 (3). pp. 971-986. ISSN 22149147

Text
Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method.pdf

Download (5MB) | Preview

Abstract

The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous (FGP) variable-thickness plates by using an edge-based smoothed finite element method (ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index (k) and maximum porosity distributions (Ω) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail. © 2020 The Authors

Item Type: Article
Divisions: Faculties > Faculty of Mechanical Engineering
Identification Number: 10.1016/j.dt.2020.06.001
Uncontrolled Keywords: Cosine transforms; Numerical methods; Porous plates; Stiffness matrix; Thickness control; Vibration analysis; Edge-based smoothed finite element methods; Edge-based smoothed finite element methods (ES-FEM); Functionally graded; Mixed interpolations; Porosity distributions; Static and free vibration analysis; Strain smoothing techniques; Variable-thickness plates; Finite element method
Additional Information: Language of original document: English. All Open Access, Gold.
URI: http://eprints.lqdtu.edu.vn/id/eprint/8642

Actions (login required)

View Item
View Item